

PFAS Sampling & Analytical Considerations

PFAS: Field Sampling & Cross-Contamination Issues (webinar) Tuesday, June 23, 2020 1:30 PM

Jim Occhialini Alpha Analytical

Topics for Discussion

"What we find in the environment often depends on what we look for and how hard we look" USGS website

- Analytical method update
- Cross contamination study results

In the Beginning...

Primary methodology

 Method 537. Version 1.1 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) Sept, 2009

- Sample preparation
 - Solid phase extraction (SPE)

- Analytical Instrumentation
 - Liquid chromatography / tandem mass spectrometry (LC/MS/MS)

EPA Method 537.1 - Target Compound List

	Analyte ^a	Acronym	Chemical Abstract Services Registry Number (CASRN)
*	Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6 ^b
	N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6
	N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9
	Perfluorobutanesulfonic acid	PFBS	375-73-5
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluoroheptanoic acid	PFHpA	375-85-9
	Perfluorohexanesulfonic acid	PFHxS	355-46-4
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorooctanesulfonic acid	PFOS	1763-23-1
	Perfluorooctanoic acid	PFOA	335-67-1
	Perfluorotetradecanoic acid	PFTA	376-06-7
	Perfluorotridecanoic acid	PFTrDA	72629-94-8
	Perfluoroundecanoic acid	PFUnA	2058-94-8
*	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11Cl-PF3OUdS	763051-92-9°
*	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid	9C1-PF3ONS	756426-58-1 ^d
*	4,8-dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4 ^e

METHOD 533: DETERMINATION OF PER- AND POLYFLUOROALKYL SUBSTANCES IN DRINKING WATER BY ISOTOPE DILUTION ANION EXCHANGE SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY

Analyte	Abbreviation	CASRN	Method 533	Method 537.1
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11CI-PF3OUdS	763051-92-9	x	x
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acd	9CI-PF3ONS	756426-58-1	x	x
4,8-Dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4	x	x
Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6	x	x
Perfluorobutanesulfonic acid	PFBS	375-73-5	x	x
Perfluorodecanoic acid	PFDA	335-76-2	x	x
Perfluorododecanoic acid	PFDoA	307-55-1	x	x
Perfluoroheptanoic acid	PFHpA	375-85-9	x	x
Perfluorohexanoic acid	PFHxA	307-24-4	x	x
Perfluorohexanesulfonic acid	PFHxS	355-46-4	x	x
Perfluorononanoic acid	PFNA	375-95-1	x	x
Perfluorooctanoic acid	PFOA	335-67-1	x	x
Perfluorooctanesulfonic acid	PFOS	1763-23-1	x	х
Perfluoroundecanoic acid	PFUnA	2058-94-8	x	x
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	4:2FTS	757124-72-4	Х	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	6:2FTS	27619-97-2	Х	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	8:2FTS	39108-34-4	х	
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6	Х	
Perfluorobutanoic acid	PFBA	375-22-4	Х	
Perfluoro(2-ethoxyethane)sulfonic acid	PFEESA	113507-82-7	х	
Perfluoroheptanesulfonic acid	PFHpS	375-92-8	Х	
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5	X	
Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1	X	
Perfluoropentanoic acid	PFPeA	2706-90-3	х	
Perfluoropentanesulfonic acid	PFPeS	2706-91-4	Х	
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6		X
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9		х
Perfluorotetradecanoic acid	PFTA	376-06-7		x
Perfluorotridecanoic acid	PFTrDA	72629-94-8		х

Method 533 shifts focus to shorter chain PFAS

Short	Short Chain PFCAs					Long Chain PFCAs			
C4 PF	BA C5	PFHeA	C6 PFHxA	C7 PFHpA		C8 PFOA	C9 PFNA	C10 PFDA	C11 PFUnA
Short	Short Chain PFSAs			Long Cha	in PFSAs				
C4 PF	BS C5	PFPeS		C6 PFHxS	C7 PFHpS	C8 PFOS	C9 PFNS	C10 PFDS	C11 PFUnS

Method 533 versus Method 537.1 - Overview

- Method 533
 - Uses extracted internal standard isotope dilution approach
 - Uses WAX SPE cartridge
 - Versus SDVB for Method 537.1
 - Uses ammonium acetate rather than Trizma® as a preservative
 - Uses 28 day holding time to extraction
 - Versus 14 day holding time for Method 537.1

Isotope Dilution Technique

- Provides additional qualitative & quantitative certainty
- Matrix recovery correction
 - Analyte-specific sample concentration normalization
- Extracted internal standards
 - Added to sample prior to sample extraction
 - Known amount of isotopically labelled form of the analyte
 - Carbon -13, ¹³C & deuterium, ²H
 - Compound-specific* internal standard

Method 537.1 / 533 Limitations

- Written for clean drinking water sample matrix – SO WHAT IF YOU HAVE…
 - Silty groundwater? Wastewater?
 - Soils, biosolids...oysters?
- 537.1 18 specific PFAS ; 533 25 specific PFAS
 SO WHAT IF YOU NEED...
 - Other compounds and/or longer or different list?

- Proscriptive
 - "as specifically written"
- Other methodologies
 - "Laboratory proprietary method"
 - LC/MS/MS
 - May use different or multiple SPE cartridges
- May use isotope dilution technique

"Other Aqueous Matrices"

- Wastewater, "silty" ground water, SPLP, etc.
- Need a specific SOP
 - Additional sample prep
 - Filtering??
 - Centrifuging
- Isotope dilution approach
 - Samples pre-spiked with extraction internal standards!

Soils & Biosolids

- Isotope dilution recommended
 - Samples pre-spiked with extraction internal stds.
 - SPE clean up cartridge

• Biosolids??

Other Sample Matrices?

Soils prep further modified

Landfill Waste Stream Study

photo courtesy Sanborn, Head & Associates, Inc.

Non- Drinking Water EPA PFAS Method?

- Validated Test Method 8327: Per-and Polyfluoroalkyl Substances (PFAS) Using External Standard Calibration and Multiple Reaction Monitoring (MRM) Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)
- Applicable to other aqueous media beyond drinking water
- Based on EPA Region 5, Chicago Regional Lab method
 - similar to ASTM D7979
 - LC/MS/MS, direct injection, not SPE, external standard calibration

The DoD considers Method 8327 a "screening method" (Alyssa G. Wingard, Senior Chemist, NAVSEA 04X6 Laboratory Quality and Accreditation Office (LQAO); July 2019, email correspondence,

DENIX).

Additional EPA Methods?

• SW-846 Method 8328 Target date??

- -Non-potable water plus soils, sediments & biosolids
 - LC/MS/MS SPE, isotope dilution
 - 24 analytes plus HFPO-DA
 - Consistent with DoD QSM 5.1, Table B-15
- EPA 1600 series method?
 - EPA working with DoD

Sampling Recommendations

"composite of multiple sources, refer to EPA, regulatory agencies"

"OK"

"NOT OK"

Field Equipment

 HDPE bottles, silicon tubing, loose paper, aluminum clipboards, nitrile gloves

Clothing / PPE

- "Well laundered", preferably cotton

Personal care products

None, see "allowable" sun screens & insect repellants

Field Equipment

 LDPE bottles, PTFE caps, PTFE tubing, waterproof field books, plastic clipboards/binders, "stickie notes", cold packs

Clothing / PPE

No fabric softener, treated water repellent fabrics, protective suits

Personal care products

- No cosmetics, moisturizers, etc. as part of personal cleaning/showering routine on morning of sampling
- Verify allowable sun screens / insect
- Food packaging

PFAS in Sampling Supplies: Fact or Fiction?

Field Book (cover & pages)

TRC

Nitrile Gloves

Bailer Line

Overview

- Initially started as an informal inquiry
 - Not an in depth study
- Conservative 24 hour contact time
 - Worst case scenario
- Products chosen at random
 - Generic product names used
- Study was conducted from 2017 through 2018
 - Performed in a series of 7 batches

Experimental Design, Leaching Step

Leaching Step

- Shaker table, 24 hr. contact time then decant
 - 2 replicate extractions per product, batch leach & method blanks
- PFAS-free water
- 250 mL volume
 - neutral pH, moderate conductivity: 300 us/cm
- 10 x 10 in product surface area (ideally)
 - Leaching containers
 - HDPE 250 ml bottles

Leaching blanks

Bentonite Leaching Procedure

- 100 grams placed in metal pan, water added
 - Pelletized, coated bentonite was removed from the water once coating dissolved
 - Otherwise, the bentonite was removed from water once it started to expand

Standard preparation procedure from there

Quality Control: Method Blanks LCS Calibration Checks Extracted IS Matrix Spikes

Experimental Design Analysis Solid phase extraction

LC/MS/MS, isotope dilution

24-compound target list

- PFAS not detected in any associated leaching or method blanks
- "Problematic" samples adhesive labels & "level C protective suit"

PTFE Tubing

25

LDPE Tubing

26

PTFE vs LDPE Tubing

PTFE Tubing & PTFE Bladder

Water Level Tapes

Bailer Line

Bailer Line 1 Bailer Line 2

30

Field Book Pages vs Field Book Cover

ng/L

No PFAS Detected

Silicone Tubing	Aluminum Foil	
Polyethylene Bladder	Adhesive Notes	
Passive Diffusion Bag	Resealable Plastic Storage Bags	
Bubble Wrap	Bentonite	
Protein Bar Wrapper		

Wrap Up

Sampling Plans - Start with standard industry practice for site characterization & sampling... And then make PFAS accommodations

Additional contamination studies

Blanks?