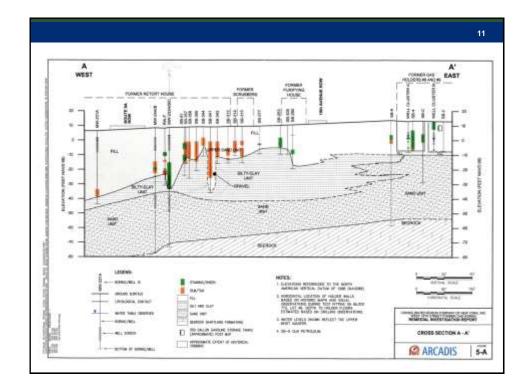
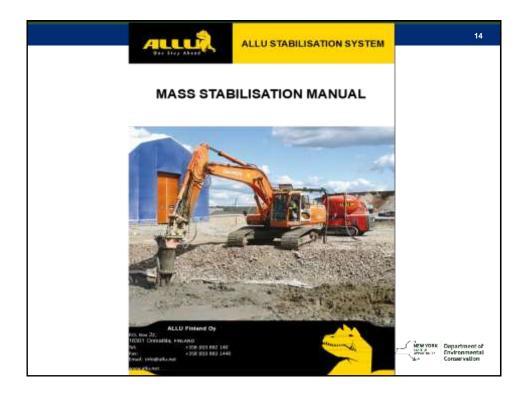
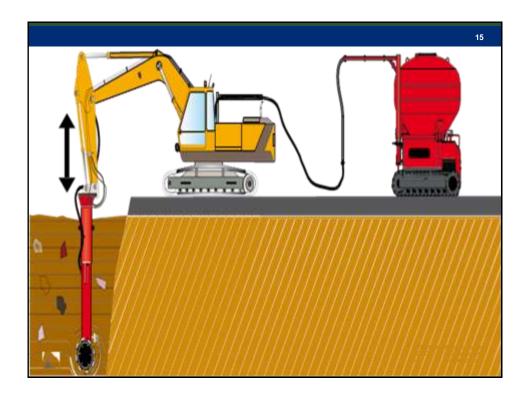


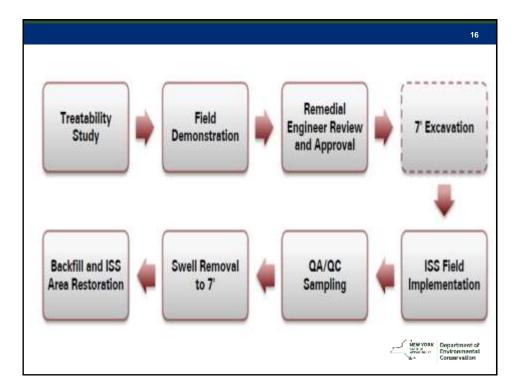
	4
Parties	
Brownfield Cleanup Program Volunteer: Edison Properties	
Consultant: Langan Engineering & Environmental Services	
Contractor: Posillico Environmental	
In-Situ Solidification Contractor: Hayward Baker Geotechnical Construction	
	Department of Environmental Conservation


High Line Park

Winter, 2014

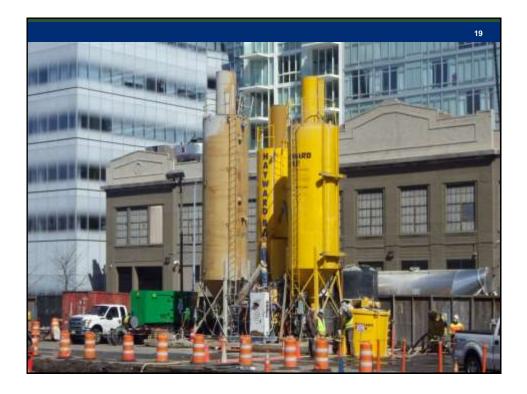


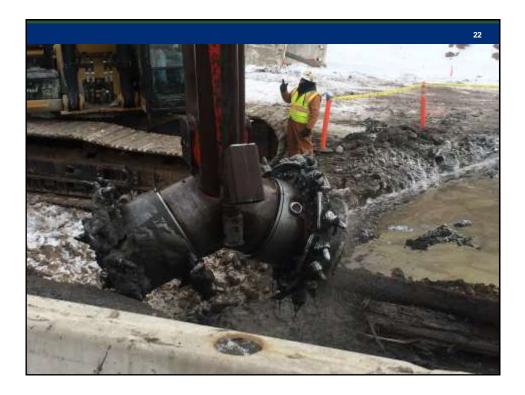

		<u>#</u>	14	13	14	1-1	1-6	キョン	1.10	101	142	143	1.14	1171	1116	141	148	2012	2.77	界行	1	4	10	fe	e	٩t	100								
	1-19		8	1 30	1	0	25	9	e	-			121			2.31			3.68			1-80	ŝ.	3-	30	T	3-01								
	ā			Ēæ		Ξ	e U	Ц	3	Е.	L		125			5-30		1	3-92			1-12	1	3	94	1	3-55						_		
	1.11			1-32	PI		1-11		1	1.34		1	1-35			1-34		1	3.96			3-37		. 3	98	1	3-99		031	146		5 167	1		
	1-17		6	1-78			1-31	Ç.	13	1-40		113	1-41			1-42	e.		1-101	p	1	-	1	ρ	P		1-10	1	19-1			34			
	141			1.44	1		3.45	5		T-40		115	1-47			1-44		1	3-1D	-		1023		31	in.	1	3-10	T	3.5	540		34	SE.		_
	120			-12		-	1-122	i		1-49		_	1-50	1		1-31		-	1-158	8	23	F108		- Bri	100	-	3-11	1	: 3-1	10		5-193		3-18	
	123		. 4	-12		-	4-12	;		1-52		1	19	-		3-54			3-112	-		6813		3:	114	-	3-11	5	- 9.2	241		51-		8-19	
į,	126		1	11		_	+12	1		1-55		1	1-56			2-57		13	1-110	6	10	HII7		P	118		3-13	9	2	191		>10	-	1-200	
-	-1.79			TR	-	_	4-10			1-58	-	-	1-58		-	2-80			5-201	_	-	212	1		111		3-30	_		ATE	_	5-218		5.7	_
	-182		- 4	-12	1	-	4.134	1		1.01	_		1-12		_	1-61	-	-	5.27	_	-	2.21		-	210		\$-22	1		123		5-211		.54	34
	-135			-]]			1-23			1-64	_	-	1.05		-	1-56	-		5-211	-		17.54	-		24.7		5-11	-	57			5-230	-		-2,11
-	-138		-	-18	-	_	6-14K	1	-	1-67		-	1-68		-	2-08		-	5-77.	_	-	-728	-	-	244	-	\$-22	-	-	224		510	_		-111
	1		5-	t	e	e				1-70	_	_	171	-	_	1-72			5-324	-	-	24	-	-	2ht		5-23		10000	01		5.134			n238
	100		-		_	100	1.24	-	-	1-73	_	_	E-N		_	1-75			5-2H			-247	-	- 20		-	3.23	-	3	14 - C		5-241			-242
	-147	-		-34			4.54		100	5.34	_	_	-244	_		5.30		112	5-348		_		-	1	L	5	1	e	er			5-2%1			1.252
-	-150	-		- 15	-	-	4-15	-		5-21		-	.254	-		- 21			5-354	-	-	-257	-		-	-	3 23	-				5 211	5		1.262
-	-153	-	-	- 25-	-	_	4-100	-	-	5-10	_	_	- 304	-		5-300			5-254	-	-	-24/		-	-		3-28	-	-	170	_	52/1		_	111
	150		-	- 15	-		4-154			> 201			222			5-20			200			287	-		278	-	3-27		1000	200	-	5-280			241
-	-162		-	- 351		_	4-101			5-28	_	-	784			5-283			5.78		-	287			191		3-77			290 107		5-201			-292
1		1	-		_			1.00		-	11.00	_	_		-							1.00	3					100		1	2			_	
	4-166	1361	807.4	=169	A.	1111	1121	4173	4-274	1135	4-276	11	1111	1111	a-180	4-181	181-8	1-185	981-9	4-285	8	1-204	3	<u> </u>	100-0	1	10	Π.	57	20	1	30	8	#100	1320

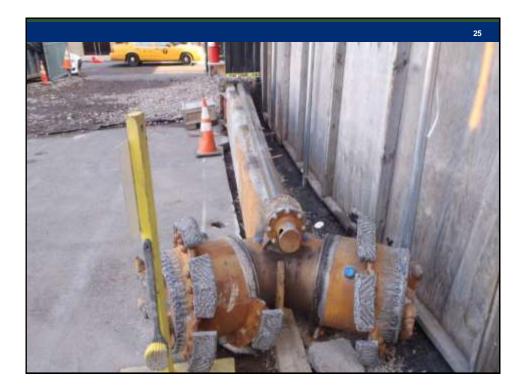

13

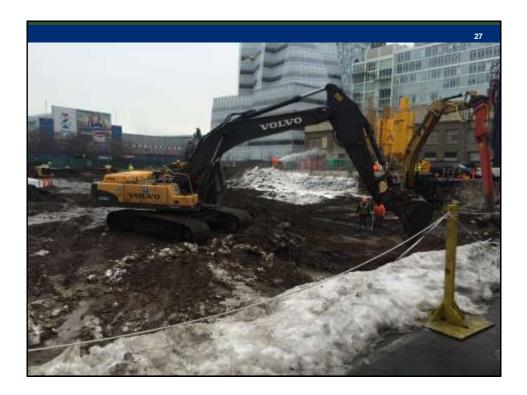
In Situ Solidification Design Considerations

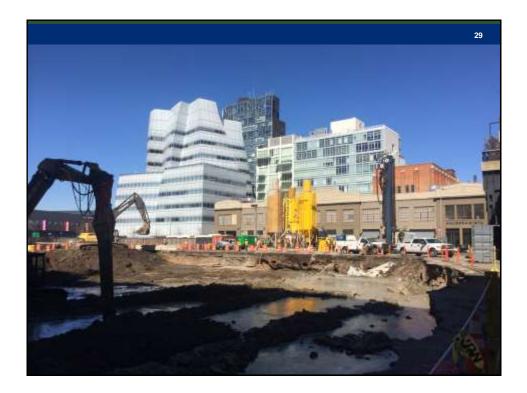

Mixing Technology Treatability Study Grout Reagents (dry weight) 7% Portland Type-I/II 0.5% Bentonite Obstructions Field Demonstration Seam between ISS and containment wall

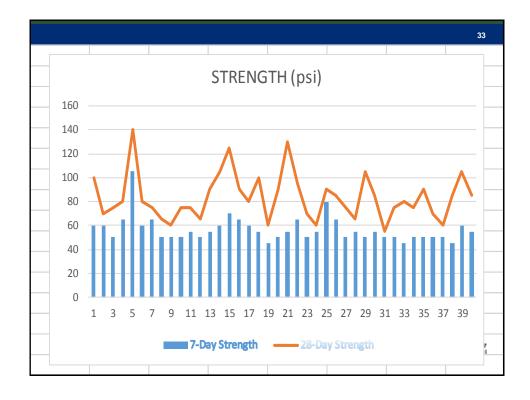


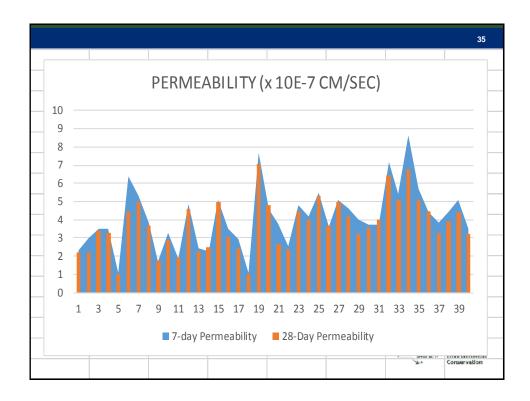


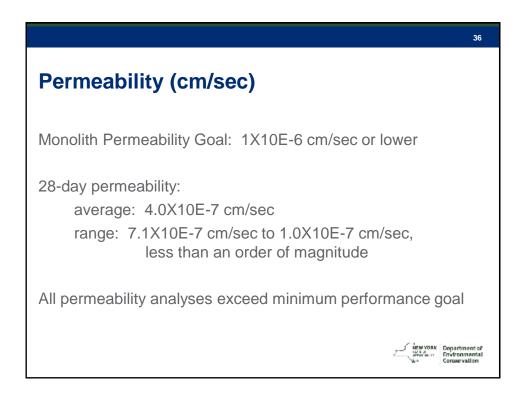


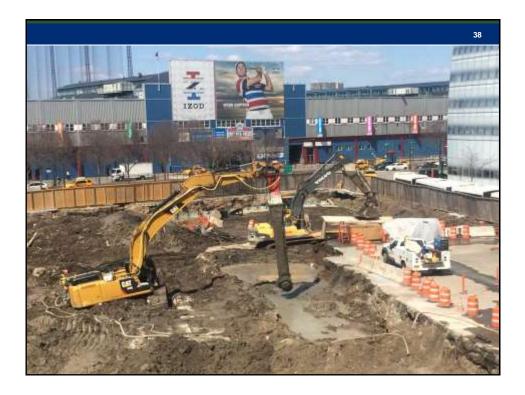


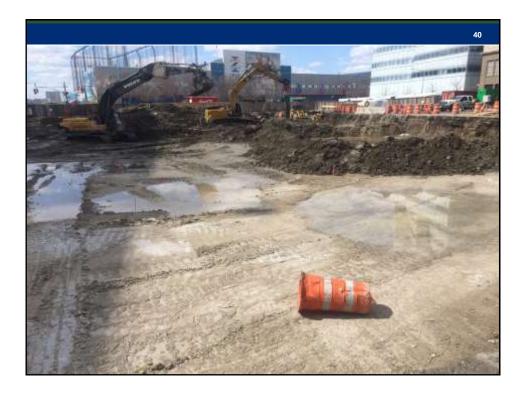














Thank You

Dick Dana Engineering Geologist 625 Broadway, Albany NY Richard.Dana@dec.ny.gov 518-402-9662

Connect with us:

Website: <u>www.dec.ny.gov</u> Facebook: <u>www.facebook.com/NYSDEC</u> Twitter: twitter.com/NYSDEC Flickr: <u>www.flickr.com/photos/nysdec</u>

44