Northeast Waste Management Officials' Association (NEWMOA) Virtual PFAS Webinar May 25, 2021

Electrochemical Oxidation of PFAS – Moving from Bench to the Field

Rebecca Mora (AECOM), Shangtao Liang, PhD (AECOM), Steve Woodard (ECT2), Rachael Casson (AECOM), and Jack Huang, PhD (University of Georgia)

Rebecca Mora AVP, Senior Technical Leader

Shangtao Liang, PhD Electrochemical Oxidation SME

Outline

- Introduction

- Electrochemical Oxidation Technology (EO) Background
- EO Applications for PFAS Treatment
- Demonstration Project
- Field Pilot Demonstration
- Key Takeaways

01

Introduction

Electrochemical Oxidation for PFAS Destruction

- Electrochemical oxidation (EO) is a proven technology that defluorinates and mineralizes short-chain and long-chain PFAS
- DE-FLUORO[™] utilizes a proprietary, high durability and low-cost electrode that can be in different sizes, forms and shapes for different applications
- DE-FLUORO™: Degradation and
 Electrochemical oxidation of per- and polyfluoroalkyl substances
- A compact, highly efficient, cost-effective mobile treatment unit for on-site PFAS destruction treatment
- It reduces environmental liability of transporting PFAS-impacted waste off site for treatment/disposal

EO as a Stand-Alone Destructive Technology

- Applicable for smaller volumes and higher PFAS concentrations
- Can treat in batch or flow-through mode

Coupling EO with Separation Technologies

Foam Fractionation Reverse Osmosis

- Applicable for larger volumes and lower PFAS concentrations
- Primary technology separates
 PFAS from the waste stream
- Primary technology typically generates a concentrated waste stream, with higher PFAS
- EO destroys PFAS in the concentrated waste stream

Demonstration Project

DE-FLUORO[™] Demonstration Project

Plate Electrodes

- Batch mode
- Large Surface Area
- High reactivity

Membrane Electrodes

- Flow-through mode
- Large surface area
- Scalable

Demonstration Results – Timed Tests

Trial #	Sample Description	Initial Total PFAS Concentration (ug/L)*	(PFOA + PFOS) Mass Reduction	Total PFAS Mass Reduction*
1	AFFF concentrate / product	6,380,000	42.7%	60.0%
2	IX-R regenerant waste (brine)	408,590	98.5%	92.9%
3	Remediation derived wastewater-soil washing	13,600	100%	99.2%
4	Spent C6 AFFF solution	4,620	80.5%	83.3%
5	Remediation derived wastewater- ozone fractionation	1,590	98.9%	90.7%
6	Source area groundwater 1	455	100%	99.7%
7	Industrial groundwater	411	100%	99.5%
8	Source area groundwater 2	27.3	98.3%	83.8%

* Based on concentrations of 27 PFAS compounds

Scalability

Model 1.0

Limited scalability

- Small volume, highly concentrated waste stream
- (e.g., IX-R still bottom, foam fractionation waste stream)

Model 2.0

Scalable

- Small to large scale
- High concentrations
- Full-scale systems already in place for treating non-PFAS contaminants

Field Demonstration

Field Pilot at WPAFB

Two Sites at Wright Patterson Air Force Base Groundwater contaminated with AFFF

- Sites: Hangar, Fire Training Area (FTA)
- Elevated PFAS concentrations at both sites
- Generate performance data for different water quality

AECOM

Approach - Coupling Approach of IX-R + EO

Field Pilot – Operation

- IX-R groundwater treatment flow rate: 2 to 5 gpm
- Designed to treat 7,000 15,000 ppt total PFAS
- Treatment goal: PFOS + PFOA < 70 ppt (Hangar) and ND for PFOS (FTA)
- Treated ~500,000 gallons of groundwater over 5 months at two sites

Field Pilot – Separation & Concentration

Ion Exchange Resin Vessels

Discharge

Still Bottom Waste

Field Pilot – Destruction

Key Takeaways

- Our testing has shown that EO can destroy PFAS in multiple types of waste streams with varying water chemistry
- EO can be effective as a stand-alone or coupled treatment technology for PFAS, depending on the treatment scenario
- The EO technology is scalable
- Field pilots and treatability tests are currently being performed with larger pilots near-term
- EO can destroy PFAS on-site; reducing the associated liability of off-site disposal of PFAS-laden wastes

AECOM Imagine it. Delivered.

Rebecca Mora Rebecca.Mora@aecom.com Shangtao Liang, PhD shangtao.liang@aecom.com