

PLAN	PLAN	
	01 BACKGROUND	03 PFAS AND COMMON COLD in NHANES
	02 PFAS AND IMMUNE FUNCTION	04 CONCLUSIONS
	HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH	

Experimental Studies in Rodents

Most studies focused on PFOS and PFOA. Some studies for PFNA and PFDA Very limited evidence for other congeners

Immunotoxic effects

- Decreased spleen and thymus weights
- Reduction in circulating immune cells
- Reduction in antibody levels
- Altered cytokine production

Mode of action

- Not elucidated,
- May involve NF-kb
- Upregulation of apoptotic genes in thymus and spleen
- Possible involvment of peroxisome proliferator-activated receptors (PPARs)

	Table 20:		100 JU 10	immunolo	Duration	Its of PEA	NOAEL	LOAFL	NOAEC	LOARC	1.	Davs	Immune	_	-
Spec	sies S	itrain	5ex	Route	(days)	PFAS	(mg/kg	per day)	(ng/	mL)	Inmune treatment	before sacrifice	endpoint (*)	Effect	Reference
Mous	e: 8	6C3F1	Mole	Gavage	29	PF05	0.000166	0.00166	18	92	SRBC	5 days	PPCs		Peder-Adam
Mour	at B	95C3F1	Furnale	Gavage	28	PFCS	0.00331	0.0166	123	666	SRBC	S days	PFCs	-	et al. (2008)
Mous	<i>ie</i> : 9	AGC3F1	Female	Gayage	21	PF05	0.005	0.025	189	670	Influenza	None	Survival	: A .	Goruge et al (2009)
Mous	a 8	6C3F1	Male	Diet.	28	PFOS	0.25	÷.,	11,600		SRBC	5 days	Serum IgM, IPFCs		Qaut ett al. (2010)
Mour	ie: 8	MC3F1	Male	via	GD 1-17	PPOS	1	.5	NR	NR	SRBC	4 days	PPCs .	1.4	Kell et al.
MOAR	e ð	NC3F1	Fernale	dams, gavage		PFOS	5		NR		SRBC	4 days	PPCs		(2008)
Mous	ю C	378L/6	Male	Gavage	60	PFOS	0.00833	0.0833	674	7,532	SRBC	4 stays	PFCs		Dong et al. (2009)
Masa	ю C	578L/6	Maie	Gavage	60	INFOS	0.0167	0.0833	2,360	10,750	SKBC	7 days	Serum 1gM		Dong et al. (2011)
Mous	in C	578L/6	Male	Gavage	60	PEOS	0.0833	0.4167	8,210	24,530	None		TNF-a, IL-6	1	Dong et al. (2012)
Mous	e C	578L/6	Male	Gavage	2	PFOS	10	5		110,460	SABC	5 days	PFCs	÷.	Zheng et al. (2009)
Mous	e C	.578L/6	Male	Gavage	2	PFOS	*	s		97,250	None		Non- specific IgM		Zheng et al. (2011)
Mout	æ B	ALB/C	Female	Gavage	21	PFOS		20	-	NR.	Ovalburnin	14 and 7 Seru	Serum IgM	÷	Vetvicka and
						PFOA		20		NR		days (two injections)		1.4	Vetvickova, 2013)
Mous		D-1 ICR)BR	Male	Gavage	29	APEO	1	10	32,000	225,000	SRBC	5 days	Serum 1gM		Lovelens et al. (2008)
Mous	e C	578L/6	Female	Gavage	15	PECIA	1.88	3.75	NR	74,913	SRBC	5 daya	Serum 1gM	+	DeWitt et al. (2008)
Mous	e C	578L/6	Female	Water	15	PFCIA	7.5	30	NR	NR	SRBC	5 days	Serum 1gH	. 4	DeWitt et al. (2016)
Rat	5	æ	Male	Dist	28	PPOS		0.14	470	958	None		Serum	- A	Lefebvre

		3-11 ve	12-19 years		
Biomar	kers	Detection Rate	GM (ng/ml)	Detection Rate	GM (ng/ml)
PFO	4	100%	1.90	100%	1.70
PFO	3	100%	3.87	100%	3.62
PFH×	S	99.81%	0.85	100%	1.29
PFN	Ą	99.81%	0.80	100%	0.61

	Multivariate Model	
Adjusted Odds Ratio	of Common Cold per Doubling	of Biomarker Concentrations
Biomarkers	3-11 years	12-19 years
PFOA	1.32 (0.83, 2.10)	1.18 (0.71, 1.97)
PFOS	1.06 (0.76, 1.48)	1.16 (0.76, 1.78)
PFHxS	1.31 (1.06, 1.62)	1.23 (0.96, 1.59)
PFNA	1.36 (1.03, 1.80)	0.68 (0.46, 1.00)

		Adjusted Odd	Is Ratio of Common	Cold per Doublin	ıg of Biomarker Co	ncentrations	
			ç	Stratified by Sex			
			3-11 years		12-19	years	
В	iomarkers	Male	Female	Test of Heterogeneity p	Male	Female	Test of Heterogeneity
	PFOA	1.28 (0.71, 2.29)	1.43 (0.63, 3.25)	0.84	0.69 (0.32, 1.50)	1.55 (0.77, 3.10)	0.19
	PFOS	1.03 (0.67, 1.58)	1.14 (0.65, 1.99)	0.65	0.76 (0.30, 1.90)	1.42 (0.89, 2.24)	0.54
	PFHxS	1.61 (1.20, 2.18)	0.96 (0.67, 1.37)	0.09	1.14 (0.79, 1.63)	1.37 (0.94, 2.02)	0.54
	PFNA	1.41 (0.99, 2.01)	1.27 (0.80, 2.01)	0.75	0.33 (0.15, 0.72)	0.96 (0.59, 1.56)	0.03

PFAS Lessons: Safety must be demonstrated before commercialization

Grandjean P. Delayed discovery, dissemination, and decisions on intervention in environmental health: a case study on immunotoxicity of perfluorinated alkylate substances. Environ Health. 2018. doi: 10.1186/s12940-018-0405-y. Mixtures, rather than isolated PFAS, may lead to immunosuppressive effects and increased susceptibility to common cold infections

The PFAS mixture effect was clearly evident in childhood, which represents one of the most critical windows of exposure for immune function

Although there is limited immunotoxilogical data for PFNA and PFHx our results suggest that these perfluorinated compounds are not safe than PFOA and PFOS

Implications

