Avian Influenza Carcass Disposal

Gary A. Flory

gaflory@deq.virginia.gov Agricultural & Water Quality Assessments Manager Virginia Department of Environmental Quality

NEWMOA States-EPA Workshop for Avian Flu Response Planning Chelmsford, MA April 13, 2006

Avian Influenza Outbreaks in 1984 and 2002

1984

Primary means of disposal was on-site burial

 88% or 5700 tons of carcass
 12% or 665 tons disposed of in local landfill

 Cost of disposal was \$142,000 and total cost was \$40 million to the industry

Concerns with On-site Burial

 Potential for surface and groundwater contaminated groundwater
 Discovery of intact carcasses during the excavation of a school 15 years later

A 1984 on-farm burial site at present

...and where intact carcasses were discovered during excavation in 1998.

FND

SPEED

Methods of Disposal Used in 2002*

Method of Disposal	Number of Birds	Percent of Total
On-site Burial	15,000	0.3
Controlled slaughter	943,000	19.9
Incineration	641,000	13.4
Landfilling	3,103,000	65.5
Composting (Ag-Bag & In-house)	43,000	0.9
Total	4,732,000	100.0

* Rendering was not utilized in 2002 because of biosecurity concerns.

Methods of Disposal Used in 2002

On-site Burial in 2002

Lessons learned in 2002:

- Tremendous opposition from neighbors concerned about groundwater contamination
 Changes in DEQ waste regulation resulted in more stringent criteria for on-site burial
 - Deed notification, monitoring wells, less birds per trench, and increased liner requirements
 - A mini-landfill in essence!

Controlled Slaughter (2002)

Lessons Learned in 2002:

- Difficult to coordinate processing with other non-infected birds
- Marketing obstacles in foreign trade make this option less desirable and promising for disease containment
- Increased concern about disease transmission to humans

Incineration (2002)

Incineration (2002)

Lessons learned in 2002:

- ◆ Logistics of providing enough <u>quality</u> wood
 - Four tons of wood per ton of carcass
- ♦ Management of loading incinerators
- ◆ Effect of weather on carcasses and wood
- ♦ Management of carcass fluids during decomposition
- ♦ Management of smoke and air emissions
- ♦ Neighbor relations and location
- ◆ Ash disposal (i.e., 6000 tons)

Landfilling (2002)

Landfilling (2002)

Lessons learned in 2002:

- Logistics of providing enough trailers and trucks with "wet lines" to operate dump trailers
- ◆ Worker safety concerns with loading and unloading
- ♦ Requires significant resources:
 - Track hoe, lighting, equipment, C & D crews, lining for trailers, stabilizing material for wet conditions
- Requires good communication between personnel at farm and landfill

Landfilling (2002) (cont'd)

Lessons learned in 2002:

- Infected litter and feed still have to be disposed of after carcasses are removed from houses (i.e., 5000 tons with a \$10 incentive from USDA)
- ♦ Biosecurity concerns
- Disposal at small local landfills was logistically challenging
- Disposal at mega-landfills was easier, but presented biosecurity concerns because of distance

Composting

♦ Ag-Bag

– 1 commercial layer operation

- 1 commercial turkeys after in-house composting
- ♦ In-House Composting
 - One grow-out turkey flock (10 pound birds)
 - One flock of turkey poults (< 5 pounds)

Composting

In-House Composting turns to Ag-Bag Composting

Composting (cont'd)

Lessons learned in 2002:

- ♦ Ag-Bag Composting
 - Potential for disease spread
 - Difficult to obtain a uniform mixture
 - Challenging to get correct moisture content
 - Need for further processing after removing compost from bag
 - Virus isolation tests showed adequate temperatures were achieved to kill the AI virus

Composting (cont'd)

Lessons learned in 2002:

♦ In-House Composting

- Need for proper management of the process by grower and integrator
- Challenging to get correct moisture content
- Virus isolation tests showed adequate temperatures were achieved to kill the AI virus
- Logistics of obtaining additional carbon material

Carcass Disposal in 2006 and Beyond

Bird Flu in Europe

Off Site Disposal?

Although landfilling evolved into the preferred method of disposal in 2002, concerns about disease transmission and the potential for human health impacts make on-farm disposal methods increasingly attractive.

Avian Influenza Research and Composting

Benefits of in-house composting

- Limits the risks of groundwater and air pollution
 - Limits the potential for farm-to-farm disease transmission
- ♦ Limits transportation costs and tipping fees
- ♦ Limits tipping fees
- ◆ Deactivate pathogens in carcass and litter
- ♦ Limit public perception and disease exposure

The Delmarva Experience

- In 2004, an avian influenza outbreak occurred on the Delmarva Peninsula.
- In-house composting was used as the disease containment and carcass disposal method on 5-pound broilers.
- Avian influenza was confined to 3 poultry farms despite being in a very concentrated poultry area.
- There were over 4 million birds within a 2-mile radius of affected farms.

Research in Virginia

- Research was successfully conducted in Virginia in 2005 to demonstrate the effectiveness of inhouse composting on large turkeys.
- We are currently participating in research on in-house composting in breeder, layer, and double-decker houses.

Results of In-House Composting of Turkeys

Very little remained of the carcasses after two weeks.
 Temperatures reached and maintained temperatures of at least 130 degrees for 5 days

◆ All carbon materials were effective in composting

◆ Tilling enhanced the composting process by 3 days.

 Crushing increased temperatures and decreased down time by 11 days.

Results of In-House Composting (cont'd)

 With a good base, cap, and proper disease monitoring, the compost can be moved out of the poultry house within 3 to 4 weeks.

 In the worst case scenario, two tractor trailer loads of carbon material per house may be needed to promote composting.

♦ However, 7 semi trailer loads were needed to haul carcasses from a typical house in 2002.

What about breeder, layer, and double-decker houses?

Different House Designs

 We are working with Integrators to identify and research in-house composting for all house designs.

 On-farm demonstration with West Virginia Dept. of Agriculture

Down Time for Poultry Houses in 2002

Average of 74 days
Average of 10 ¹/₂ weeks
Lowest number of days = 25
Highest number of days = 177

Conclusions

- Landfilling was the preferred method of disposal in 2002 despite its costs.
- In-house composting appears to be the most promising disposal option to contain disease outbreaks and minimize disposal costs.
- Public perception can quickly influence what are acceptable disposal options.
- Contingency plans for on-farm disposal options have to be developed and maintained.

Contact Information

Gary A. Flory gaflory@deq.virginia.gov

540-574-7840