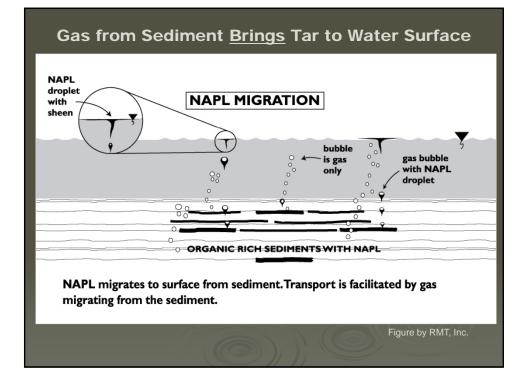

Bangor Landing Bangor, Maine

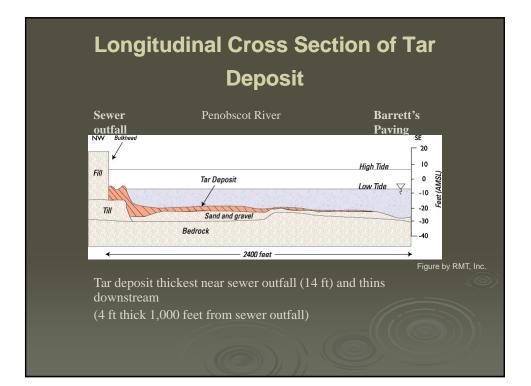
Case Study-Sediment Remediation

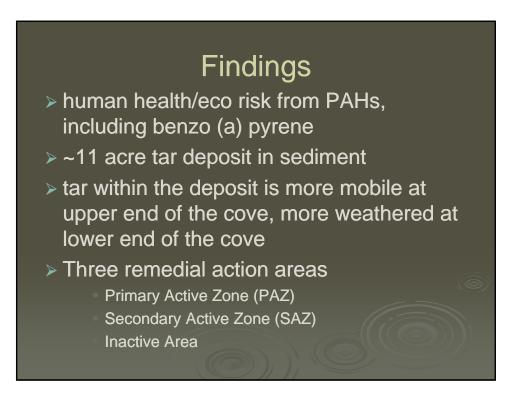
Maine Department of Environmental Protection City of Bangor, with RMT, Inc.

Bangor Landing Project Background Summary

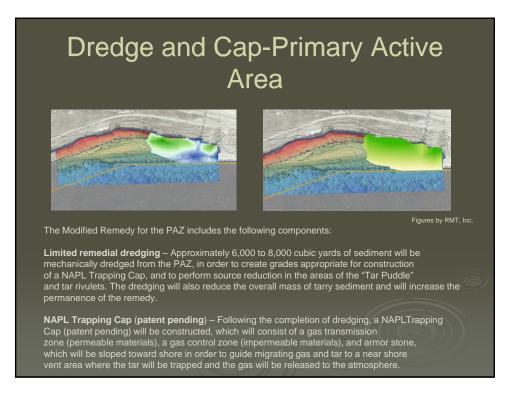
- Bangor Gas Works (BGW) operated a manufactured gas plant between 1851 and 1963
- BGW waste water, containing coal tar and oil tar, was discharged to a stone sewer, which then discharged to the Penobscot River
- Tars entrained in warm, fast moving waste water precipitated out upon entry to slower, colder water of Dunnett's Cove
- Tar is present in sediments in Dunnett's Cove over an approximate 11 acre area
- Origin of the tar was explored, and other potential sources were ruled out, BGW is the most likely source of the tar based PAHs in the river
- Source site was remediated by removal/equivalent cap and the parcel returned to productive use as a grocery store site




from tar deposit near the sewer, and is transported by river currents


Remedial Investigation

- Sediment, Surface Water, Fish
 Tissue Characterization-2002-2003
- > HHRA/BERA-2002, 2004
- > Remedial Action Objective-2005
- > Feasibility Study-2005
- > Pre-Design Studies 2007-2008
 - Bathymetry
 - Hydrodynamics and tidal flux
 - Groundwater interaction
 - Ice impact study
 - Geotechnical Investigation
 - Waterway use and infrastructure



4

Selected Remedy

- risk based cleanup
 - Removal-stabilization and disposal of mobile source areas, source reduction
 - Cap remaining PAH areas in the PAZ, SAZ
 - Habitat cover over weathered tar to enhance natural sedimentation and natural recolonization

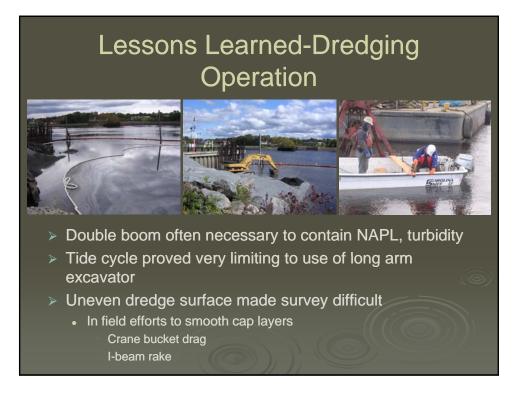
Considerations for Dredging Remedy

- Access, navigational traffic
- Background/downstream TSS
- Buried debris/boulders
- Currents/tides
- Dredging depths, side slopes
- > Slope stability at shoreline, navigational channel
- > Work area, sediment handling area
- Transport routes
- Endangered species considerations
 - Atlantic salmon
 - Short nosed sturgeon

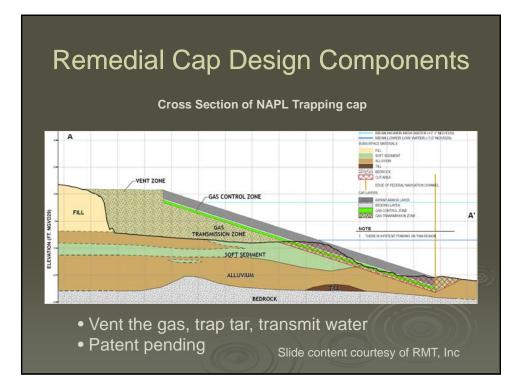
Considerations for Capping Remedy

- > Water depths/slopes
- Slope stability, erosion
- Currents, tides
- Access and navigation demands
- Groundwater flow
 - Seepage/upwelling
- Sediment gas

Sediment Dredging


- Primary Active Zone
 (PAZ) ~ 1.3 acres
- Total Volume Tar Impacted Sediment – 21,000 cubic yards
- Sediment Dredged ~ 7,000 cubic yards (approx 100,000 gal NAPL)
- Stabilized Sediment Disposed ~9,500 tons

Stabilize Dredged Sediment



Lessons Learned - Stabilization

- > Spec'd stabilization agent QuickSolid 50 ineffective
- Lime as a stabilizing agent created unregulated airborne dust– applied 20% opacity not to exceed standard
- Water spray for dust control generated high pH surface water runoff
- Air scrubber system, installed to handle VOCs, not needed and not applicable to lime dust
- Water handling system, installed to de-water sediment for stabilization, not needed
- > Odor control not needed

Cap Installation

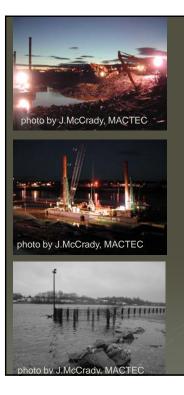
- > cap installed in layers
 - cast with long arm excavator
 - dropped with crane bucket
 - cast with stone slinger
- > each layer surveyed
- Layers "stepped" to avoid butt end joins

<section-header><image><image>

Field Change Orders – Design Changes

Modified dredge depths

- Modified cap design
 - Tapered design at bulkhead
 - Change to toe of slope, toe vent
 - Change to design grades
 - Change to OSSO invert
- > Changes to materials specifications
 - Substitute select stone for general fill
 - Fines in riprap
 - Change in Aquablok design mix production, storage, placement
 - Lime instead of QuickSolid50 as stabilizing agent
- Discontinue air monitoring
- > Discontinue turbidity monitoring, remove turbidity curtain
- Remove temporary settlement plates from plan
- Modify construction quality control program


Lessons Learned-Cap Construction

- > Barge-based install uneven surface made survey difficult
 - In field efforts to smooth cap layers
 - Crane bucket drag
 - I-beam rake
- Ice, tides hampered near shore construction
- > Silt curtain trapped ice, ice flow tore at curtain
- Rock dust turbidity bigger problem than dredging
- Flexibility and teamwork to resolve issues is key to successful project

Containment Around Construction Area

Lessons Learned

- Endangered species consideration restricted construction schedule, short days and unfavorable tides meant occasional night work
- Night work meant no survey data collected
- Late fall through winter construction meant flooding conditions, ice

Next Steps

- Complete construction tasks
 - gas collection trench
 - OSSO invert
 - re-survey
- Cap performance monitoring program
 - Visual observation of ebullition, tar
 - Tar flux evaluation
 - Piezometer measurements, pore water sampling
 - Observation tubes
 - Monitor vapor points at shoreline
 - Visual inspections
 - Near shore
 - Intertidal
 - Ice evaluation
 - Subtidal
 - Settlement plates

Project Team

- City of Bangor
 - Jim Ring, Director Engineering and Infrastructure
- > RMT, Inc.
 - Gene McLinn Project Manager
 - John Rice, Hans Hinke Design, Project Engineers
- Maine Department of Environmental Protection
 - Kathy Howatt Project Manager
 - Troy Smith Project Geologist
 - Fred Lavallee Project Engineer
- MACTEC Engineering and Consulting project overseer for DEP

NAPL Trapping Cap Design contact information

RMT, Inc. 744 Heartland Trail Madison, Wisconsin 53717 608-831-4444

Gene McLinn 608-662-5196 John Rice 608-662-5235