

RAOs Agenda

- Determining exposure pathways & cleanup goals
- Considering long-term liability & O&M cost issues
- Lessons learned

NEWMOA

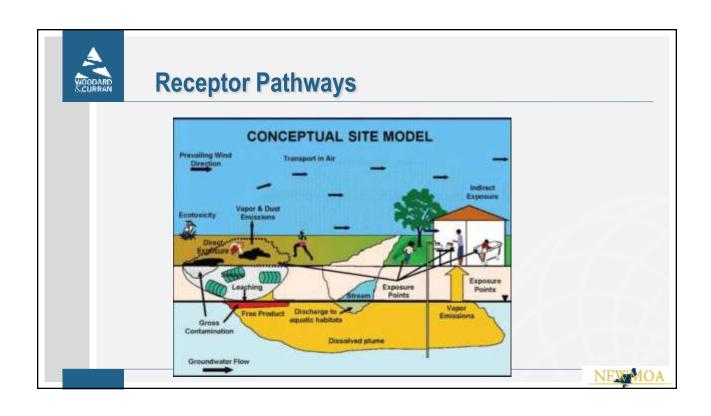
How do you pick what's appropriate?

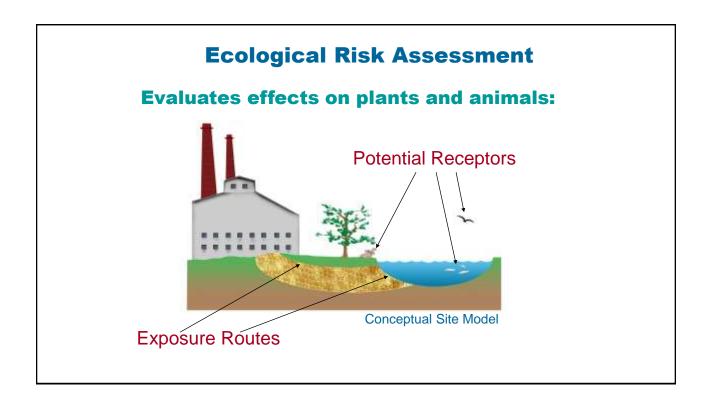
Establishing Remedial Action Objectives (RAOs) by combining:

- Receptor Scenarios
- Future Use

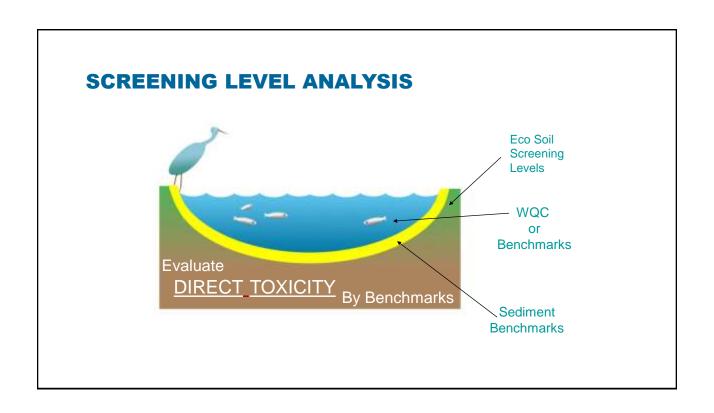
..and setting RAOs by:

- Meeting Risk-based Standards/Goals and/or
- Protecting/Eliminating Receptor Scenarios




Risk Assessment & Risk-based Remedial Standards

- Receptor Scenario/Risk Assessment Basics
 - Receptor Pathways
 - ➤ Ecological RA
 - > Human Health RA
- Remedial Standard Frameworks/Examples:
 - > EPA Regional Screening Level Tables
 - New York
 - Connecticut



I. SCREENING LEVEL RISK ASSESSMENT

- Uses Conservative Assumptions & Generic Benchmarks from the Literature
- •SINGLE line of evidence: benchmarks
- Uses soil, sediment or surface water sample data from the RI
- Screens out constituents; remaining ones need more study

II. SITE-SPECIFIC (BASELINE) RISK ASSESSMENT

- •Are effects occurring at my site
- •Uses site data in place of estimated values
- •MULTIPLE lines of evidence; more expensive
- Much less conservative
- Use if remediation likely or costly

Human Health Risk Assessment

TABLE 7.4

Exposure Scenario Receptors and Pathways

- Based on Potential Exposure Scenarios
- ...and Calculating Exposures for those Scenarios...

Restricted Land Use Category Unrestricted Residential Commercial Residential Exposed Population Adult and Adult and Adult and Adult and Adult and Adolescen Route of Exposure Incidental soil ingestion Inhalation of spil Dermal contact with soil Homegrown. vegetable consumption Producing animal products for consumption Groundwater protection Ecological resource

Source: Adapted from New York State Department of Environmental Conservation, May 2010, DER-10: Technical Guidance for Site Investigation and Remediation.

HH Risk Assessment – Exposure Analysis

For instance, the equation used to calculate exposure from inhaling airborne dust for an adult in an industrial setting is

Intake $(mg/kg/day) = (EPC_{air} \times IR \times EF \times ED)/(BW \times AT)$

where

EPC_{air} = exposure point concentration in air (mg/m³)

IR = inhalation rate (m³/day)

EF = exposure frequency (days/year)

ED = exposure duration (years)

BW = body weight (kg) AT = averaging time (days)

Toxicity Assessment

- Carcinogens and non-carcinogens
- For carcinogens:

Group A-Carcinogenic to humans

Group B-"Probably" carcinogenic to humans

Group C-"Possibly" carcinogenic to humans

Group D-Not classifiable as to human carcinogenicity

Group E-Evidence of noncarcinogenicity for humans

In a toxicity assessment, the category of carcinogens includes Groups and B only. The USEPA's Integrated Risk Information System (IRIS) Web sit (www.epa.gov/iris/search_human.htm) lists the chemicals for Groups A, and C.

USEPA's Integrated Risk Information System (IRIS):

www.epa.gov/iris/search_human.htm

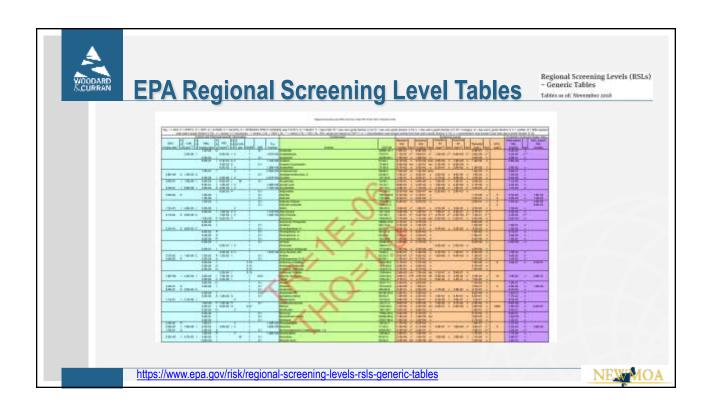
Tiered toxicological sources

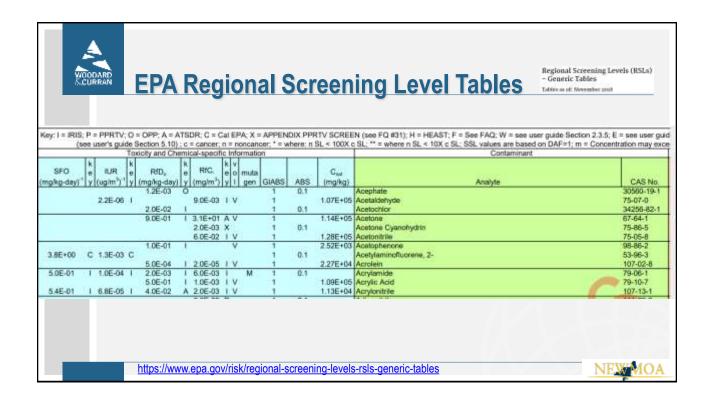
The USEPA recommends the following hierarchy of toxicological sources for Superfund Risk Assessments (OSWER Directive 9285.7-53, December 5, 2003):

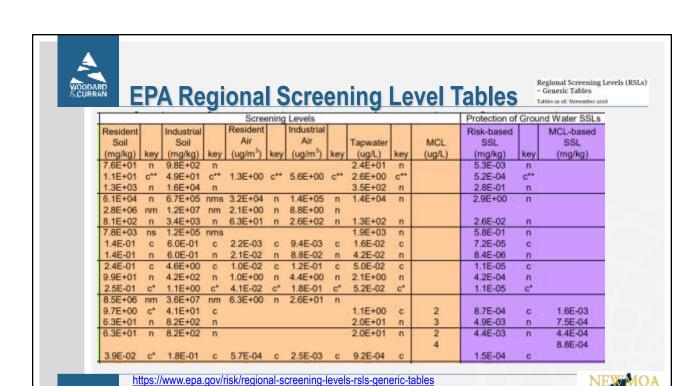
Tier 1-IRIS.

Tier 2—USEPA's provisional peer reviewed toxicity values (PPRTVs)— The Office of Research and Development/National Center for Environmental Assessment/Superfund Health Risk Technical Support Center develops PPRTVs on a chemical-specific basis. These values are available upon request through the project USEPA risk assessor for Superfund projects.

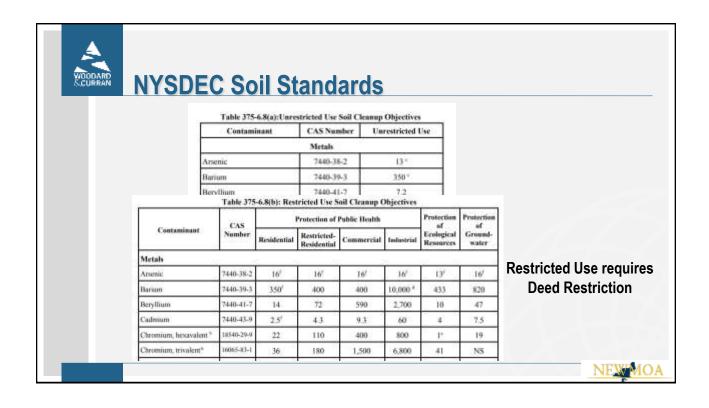
Tier 3—Includes additional USEPA and non-USEPA sources, such as the California EPA toxicity values (www.oehha.ca.gov/risk/ChemicalDB) and the Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (www.atsdr.cdc.gov/mrls.html).



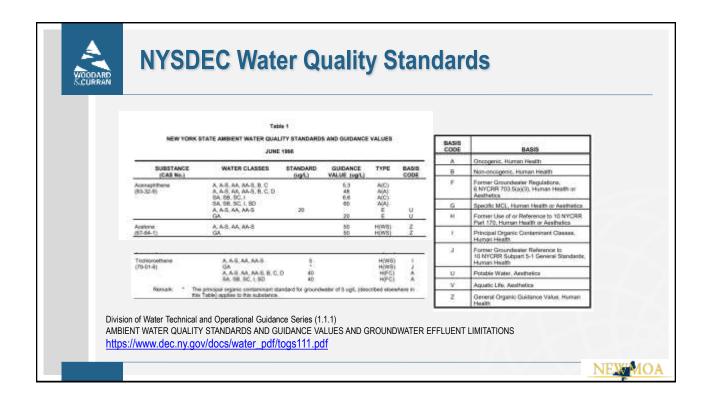


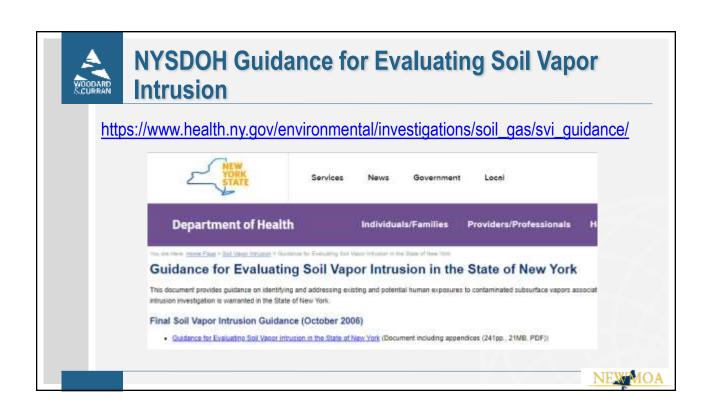

Target Levels...depending on jurisdiction and risk scenario

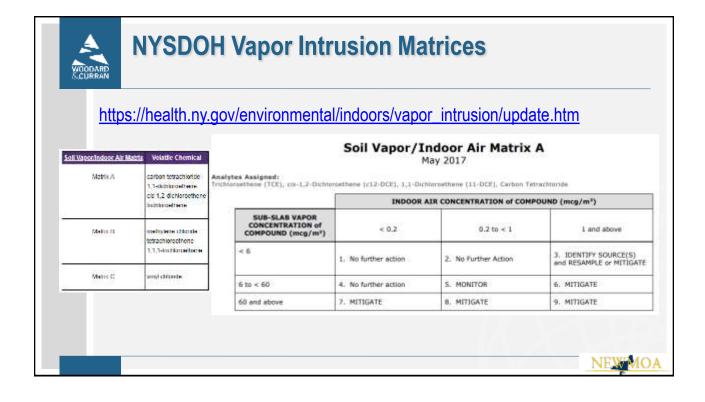
- Carcinogens ...generally:
 - > 10⁻⁶ for individual carcinogens
 - > 10⁻⁵ for cumulative carcinogens
- Non-carcinogens ...generally:
 - > Hazard Index of 0.1 to 1 individual constituents
 - > Hazard Index of 1 to 10 cumulative non-carcinogens



New York State


- NYSDEC Soil Standards
 - > Unrestricted
 - > Restricted
 - Protection of Eco Resources
 - Protection of Groundwater
- NYSDEC Water Quality Standards
 - Surface Water
 - Groundwater
- NYSDOH Guidance for Evaluating Soil Vapor Intrusion





Connecticut

- Water Quality Standards
 - Surface Water
- Remediation Standard Regulations (RSRs)
 - > Soil
 - Direct Exposure
 - Protection of Groundwater
 - > Groundwater
 - Groundwater Protection
 - Surface Water Protection
 - Soil Vapor/VI pathway
 - · Groundwater Volatilization
 - · Soil Vapor

NEWMOA

CTDEEP Water Quality Standards (WQS)

- CT Water Quality Standards (WQS) for surface water quality criteria
- Groundwater remediation standards in the RSRs...
- ...but RSRs for Surface Water Protection point back to WQS

WATER QUALITY STANDARDS

Submitted to USEPA concery 2013 (Months April 13, 1996

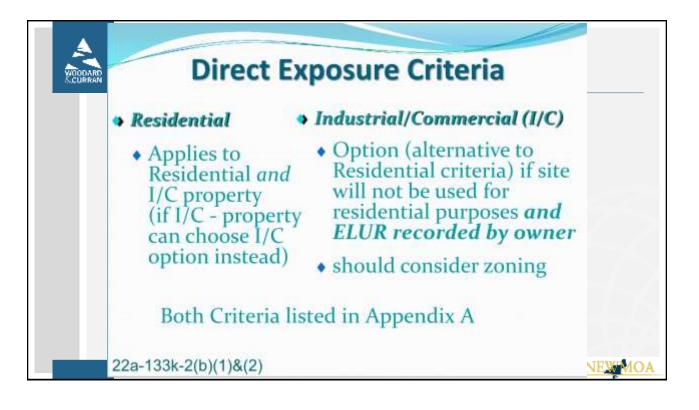
CTDEEP Water Quality Criteria

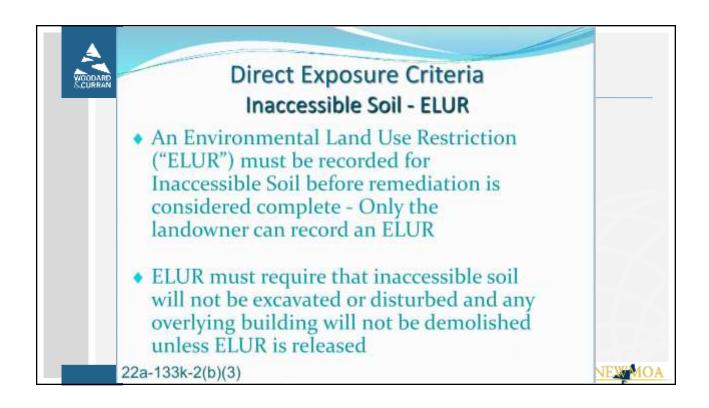
Numerical Water Quality Criteria for Chemical Constituents (ug/L)

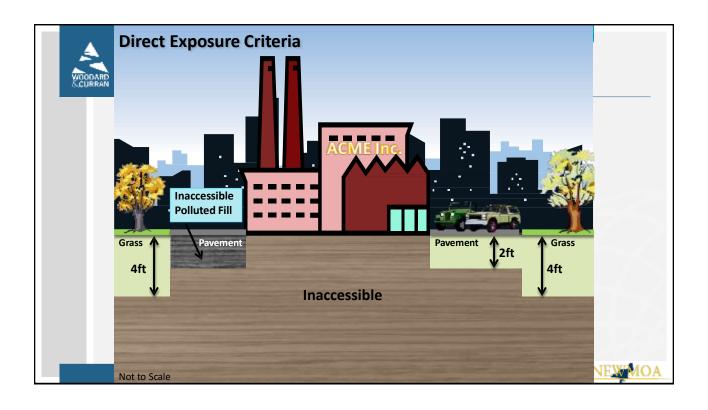
Chemical Centitums	CASIEN	Acute	Chronic'	Acute	Chronic*	Consumption of Fish	Consumption of Water & Fish	Health Designation*	
freegunice ⁷									
Antenny	7440566					640	5.6	TT	
Americ (total)	7440382	340	150	69	30	0.021	0.011	A	
Beryllian	7440417					0.31	0.0077	11	
Cudesson	7440439	1.0	0.125	40	8.8	10,769	30	TT	
Chermian (bes)	18540299	16	11	1,100	50	2,019	100	TT	
Chromium (tri)	16065831	323	42			1.009,615	100	11	
Copper	7440508	14.3"	4.5"	4.8	3.1		1,300	TT	

The Remediation Standard Regulations ("RSRs")

- Sections 22a-133k-1 through -3 of the Regulations of Connecticut State Agencies ("RCSA")
- Section 22a-133q-1 RCSA (ELURs)

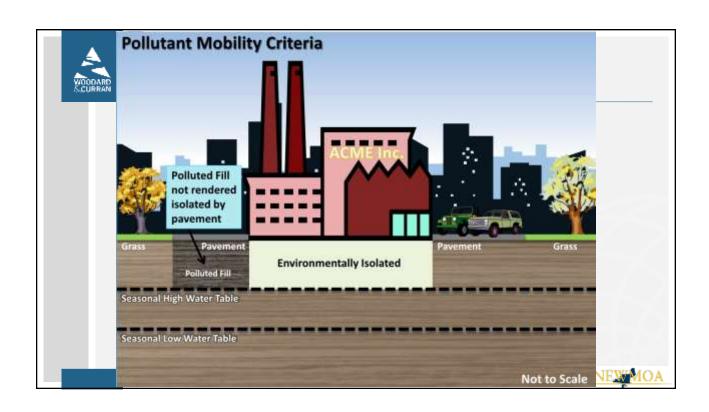

CT's Deed Restriction enforceable by CTDEEP


• First Promulgated Jan. 1, 1996


Update/Revisions Effective June 27, 2013

Pollutant Mobility Criteria Purpose

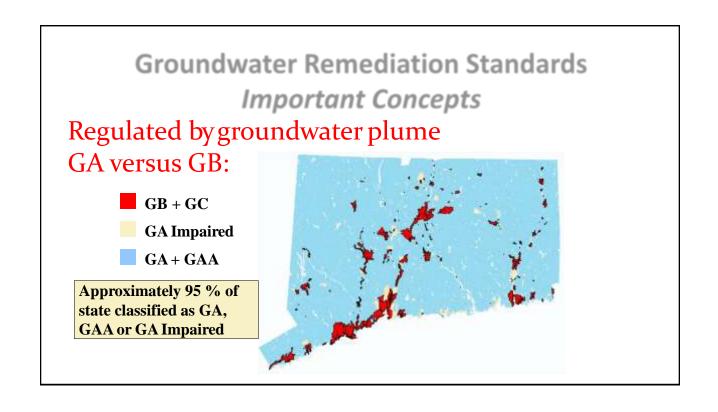
- GA to prevent any pollution of the groundwater
- GB to prevent unacceptable further degradation of the groundwater


Pollutant Mobility Criteria

Exemption for Environmentally Isolated Soil

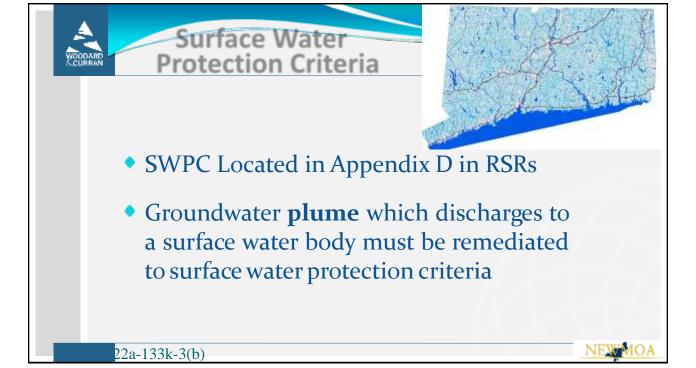
- Beneath existing building or other structure approved by the Commissioner Note - Building includes roof, walls, floor, etc.
 Other structure examples - bridge abutment, large AST, clarifier, etc. ...or an Engineered Control (e.g. impervious cap)
- Other conditions on next slide:

22a-133k-1(a)(18) and 22a-133k-2(c)(4)(A) labeled as an "Exception"



SUMMARY OF NUMERICAL CRITERIA Remediation Standard Regulations Appendices A, B, C, D, E, and F JUNE 27, 2013

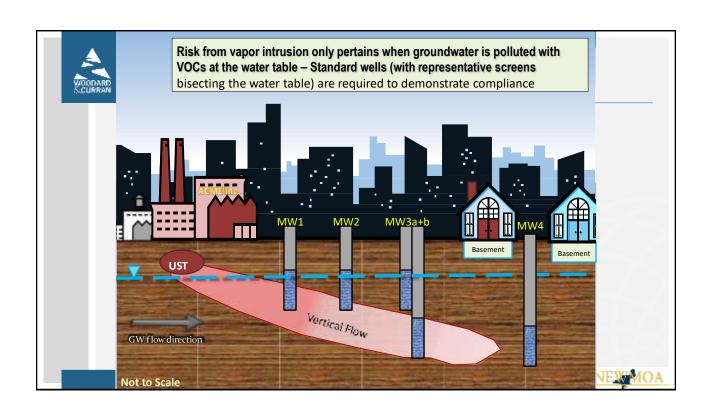
Media		Grou			
	R-DEC (mg/kg)	I/C-DEC (mg/kg)	GA-PMC (mg/kg)	GB-PMC (mg/kg)	GWPC (µg/L)
VOLATILE ORGANIC SUBSTANCES					
Acetone	500	1000	14	140	700
Acrylonitrile	1.1	.11	0.01	0.1	0.5
Benzene	21	200	0.02	0.2	1
Bromoform	78	720	0.08	0.8	4
2-Butanone (MEK)	500	1000	8	80	400
Carbon tetrachloride	4.7	44	0.1	1	5
Chlorobenzene	500	1000	2	20	100
Chloroform	100	940	0.12	1.2	6
Dibromochloromethane	7.3	68	0.01	0.1	0.5
1.2-Dichlorobenzene (2 DCB)	500	1000	3.1	3.1	600



Development of GWPC

- GWPC generally apply only in GA/GAA Areas
- Risk based number protects people drinking
- groundwater (10-6 carcinogens; HI = 1)
- Basis Federal MCL, State Action Level or risk-based
- calculated using RSR formula
- Adjusted upward based on detection limit

Adjusted downward based on ceiling level



General Volatilization Criteria Requirements

- ◆ Groundwater within 15 feet of the ground surface (or within 15 feet beneath the lowest level of a building) shall be remediated to the residential volatilization criteria. Proposed 30 ft....
- Can use I/C Criteria with ELUR
- Soil Vapor Criteria Also in RSRs (Residential and I/C)

22a-133k-3(c)(1)

SUMMARY OF NUMERICAL CRITERIA Remediation Standard Regulations Appendices A, B, C, D, E, and F JUNE 27, 2013

Media	Soil				Groundwater/Surface Water				Soil Vapor	
	R-DEC (mg/kg)	I/C-DEC (mg/kg)	GA-PMC (mg/kg)	GB-PMC (mg/kg)	GWPC (µg/L)	SWPC (µg/L)	R-GWVC (µg/L)	I/C-GWVC (µg/L)	R-SVVC (ppmv)	I/C-SVVC (ppmv)
VOLATILE ORGANIC SUBSTANCES									NOTE (2)	NOTE (2)
Acetone	500	1000	14	140	700	NE	50000	50000	2400	8250
Acrylonitrile	1.1	11	0.01	0.1	0.5	20	NE	NE	NE	NE
Benzene	21	200	0.02	0.2	1	710	215	530	1	113
Bromoform	78	720	0.08	0.8	4	10800	920	3800	1.5	6
2-Butanone (MEK)	500	1000	8	80	400	NE	50000	50000	2400	8285
Carbon tetrachloride	4.7	44	0.1	1	5	132	16	40	1	2.7
Chlorobenzene	500	1000	2	20	100	420000	1800	6150	31	106
Chloroform	100	940	0.12	1.2	6	14100	287	710	4.5	10.4
Dibromochloromethane	7.3	68	0.01	0.1	0.5	1020	NE	NE	NE	NE
1.2-Dichlorobenzene (2 DCB)	500	1000	3,1	3.1	600	170000	30500	50000	240	818
1.3-Dichlorobenzene (3 DCB)	500	1000	12	120	600	26000	24200	50000	240	818
1.4-Dichlorobenzene (4 DCB)	26	240	1.5	15	75	26000	50000	50000	950	3270
1.1Dichloroethane (11DCA)	500	1000	1.4	14	70	NE	34600	50000	850	3037
1.2-Dichloroethane (12DCA)	6.7	63	0.02	0.2	1	2970	21	90	1	1
1.1-Dichloroethylene (11DCE)	1	9.5	0.14	1.4	7	96	1	6	1	1
cis-1.2-Dichloroethylene	500	1000	1.4	14	70	NE	NE	NE	NE	NE
trans-1.2-Dichloroethylene	500	1000	2	20	100	NE	NE	NE	NE	NE
1.2-Dichloropropane	9	84	0.1	1	5	NE	14	60	1	1
1.3-Dichloropropene	3.4	32	0.01	0.1	0.5	34000	6	25	1	1
Ethylbenzene	500	1000	10.1	10.1	700	580000	50000	50000	1650	5672
Ethylene dibromide (EDB)	0.007	0.067	0.01	0.1	0.05	NE	4	16	1	1
Methyl-tert-butyl-ether (MTBE)	500	1000	2	20	100	NE	50000	50000	1000	3415
Methyl isobutyl ketone (MIBK)	500	1000	7	14 .	350	NE	50000	50000	140	480
Methylene chloride	82	760	0.1	1	5	48000	50000	50000	1200	2907
Strvene	500	1000	2	20	100	NE	580	2065	8	28
1.1.1.2-Tetrachloroethane	24	220	0.02	0.2	1	NE	12	50	1	1.5
1.1.2.2-Tetrachloroethane	3.1	29	0.01	0.1	0.5	110	23	100	1	1
Tetrachloroethylene (PCE)	12	110	0.1	1	5	88	1500	3820	11	27
Toluene	500	1000	20	67	1000	4000000	23500	50000	760	2615
1.1.1-Trichloroethane (TCA)	500	1000	4	40	200	62000	20400	50000	1310	4520
1.1.2-Trichloroethane	11	100	0.1	1	5	1260	8000	19600	40	93

How do you pick what's appropriate?

Establishing Remedial Action Objectives (RAOs) by combining:

- Receptor Scenarios
- Future Use

..and setting RAOs by:

- Meeting Risk-based Standards/Goals and/or
- Protecting/Eliminating Receptor Scenarios

...and considering Long-term liability & O&M(&M) cost issues...

Long-term liability & O&M(&M) cost issues

- "Passive"
 - Institutional Controls (e.g. zoning, deed restrictions)
 - Engineered Controls w/o maintenance (e.g. buildings, liners/passive venting, reactive permeable barriers)
 - May still have monitoring/inspection costs going forward!
- "Active"
 - Engineered Controls w/maintenance (e.g. caps, access limitations)
 - > O&M&M of long-term systems (e.g. pump & treat, AS/SVE, SSDS, ...)
 - > MNA/Long-term monitoring costs

Lessons Learned

- Ensure up front that future use is acceptable
- Having specific future site configuration and integrating remedial goals/approach can save a lot of time & \$\$
- Start Institutional Controls process <u>early</u> in parallel with RAO and remedial technology selection

