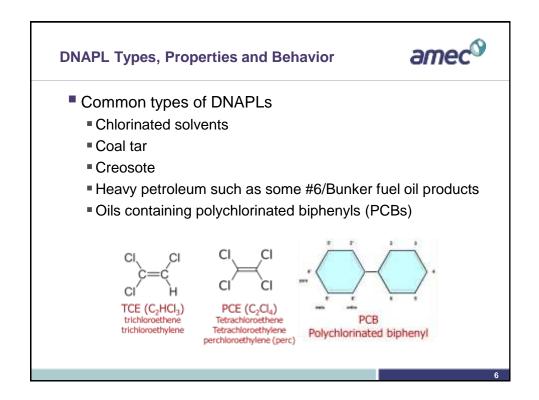
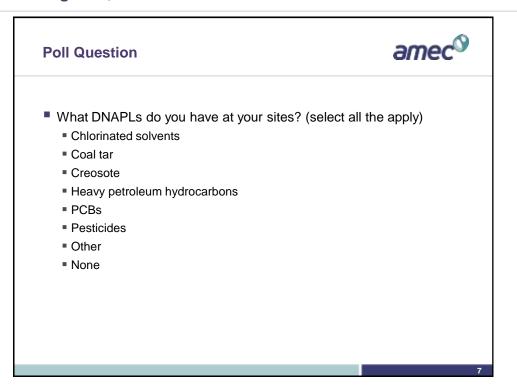
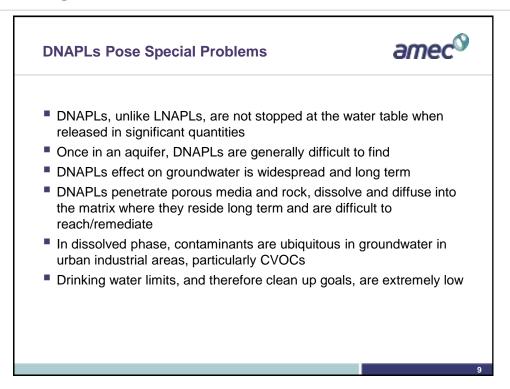
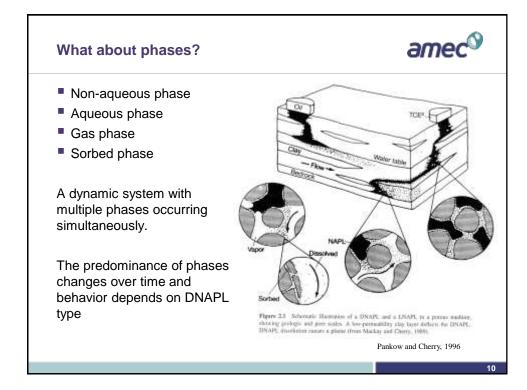

Introduction – An (slow) Evolution in our Thinking

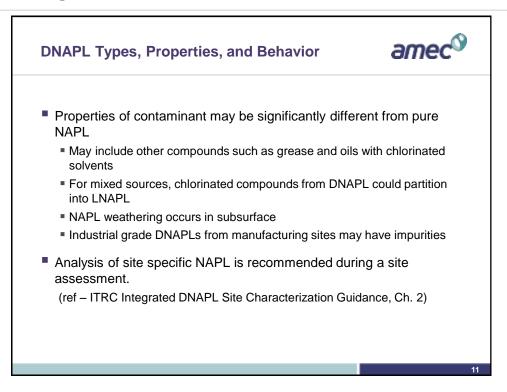

DNAPLs are complex mixtures that evolve over time

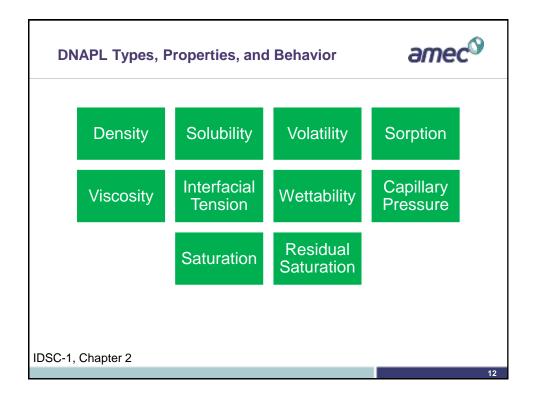

amec

- Physical and chemical properties of DNAPL matter
- Different types of DNAPL require different approaches
- DNAPL sources evolve over time
- Product recovery alone is not effective
- Monitoring wells are not a characterization tool
- Micro-scale hydrostratigraphy is enormously important
- High-resolution source characterization is a good investment
- Flux-based remediation over concentration-based
- Risk-based, exposure-based remedial objectives
- Engineering and institutional controls are effective
- Adaptive, multi-component, multi-stage, long-term remedies
- An evolving notion of "Closure"

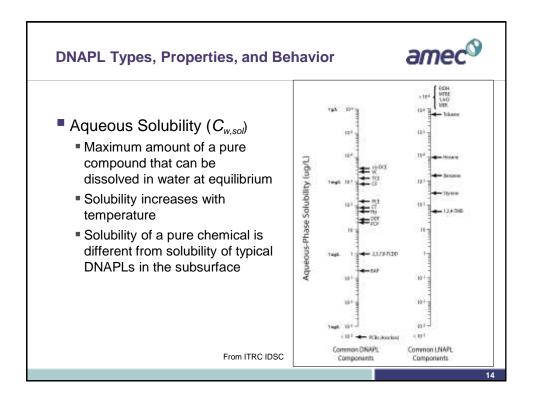


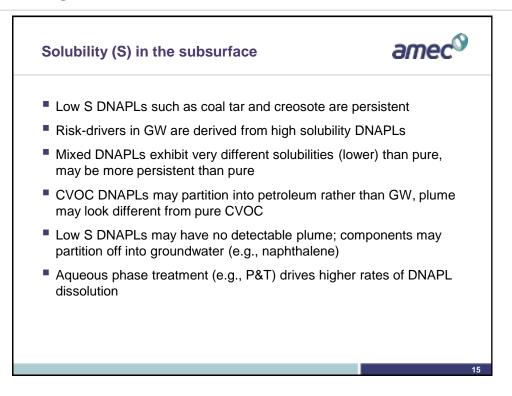


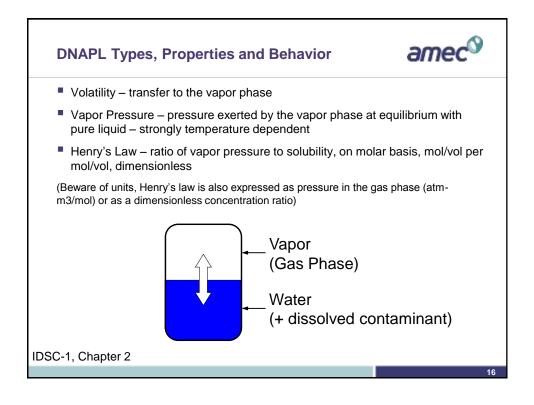




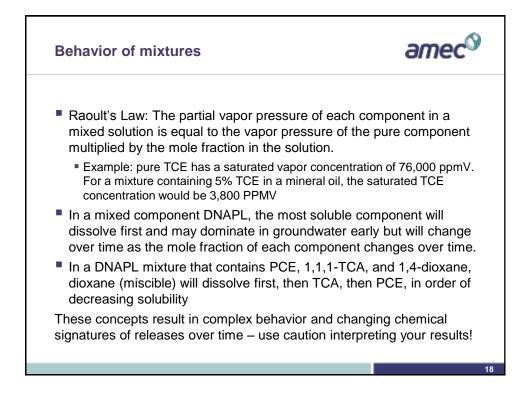
 dense – relative to water, they sink! non-aqueous phase – aka "neat", "free-product", "immiscible liquid", "separate phase" – existing as a pure chemical in the ground. liquid In fact, all of these properties are a bit sketchy DNAPL density is a continuum based on composition DNAPL can exist as a stable separate phase only after its dissolved phase has reached saturation in the surrounding liquid, groundwater DNAPLs are liquids by definition, but they exist in the presence of other phases, dissolved, vapor 	What is a DNAPL?	amec [©]
	 non-aqueous phase – aka "neat", "free-product", "immiscible liquid", "separate phase" – existing as a pure chemical in the ground. liquid In fact, all of these properties are a bit sketchy DNAPL density is a continuum based on composition DNAPL can exist as a stable separate phase only after its dissolved phase has reached saturation in the surrounding liquid, groundwater DNAPLs are liquids by definition, but they exist in the presence of other phases, 	Disaleed DNAPLs migrating through unastarated deposits Desaleed DNAPLs anking through astarated deposits

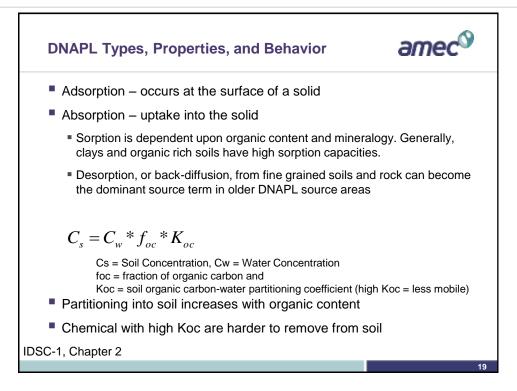


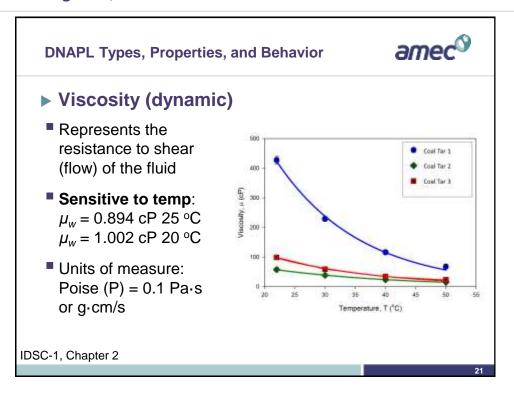




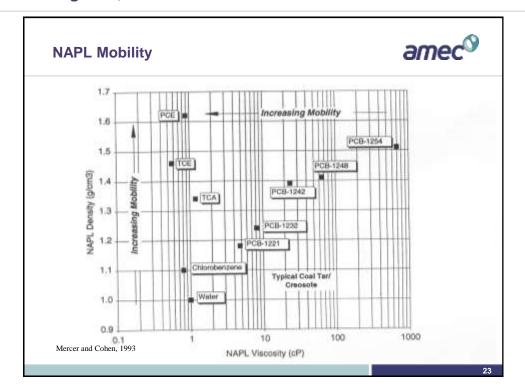
NAPL	Densities	amec [®]
	Liquid	Density g/cm ³
	Water	1.0
	Gasoline	0.71 to 0.77
	Diesel	0.80 to 0.85
S	#6 Fuel Oil	1.05
ũ	Pure TCE	1.46
L C C C C C C C C C C C C C C C C C C C	Spent degreaser TCE, up to 25% oil and grease	1.38
	Pure PCE	1.63
led	Dry Cleaner PCE recovered from subsurface	1.59
mpi	Pure chlorobenzene	1.11
0000	Creosote	1.01 to 1.13
Ice	Aged MGP Coal Tar	1.02 to 1.1
nos	PCB	1.0 to 1.6
Various sources compiled in ITRC IDSC	PCB 1254	1.51
∕ario	PCB 1260	1.59
-		

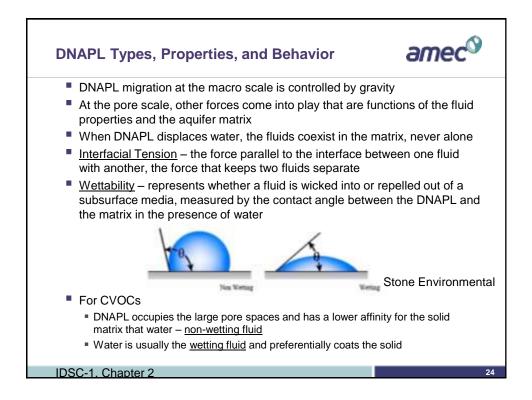


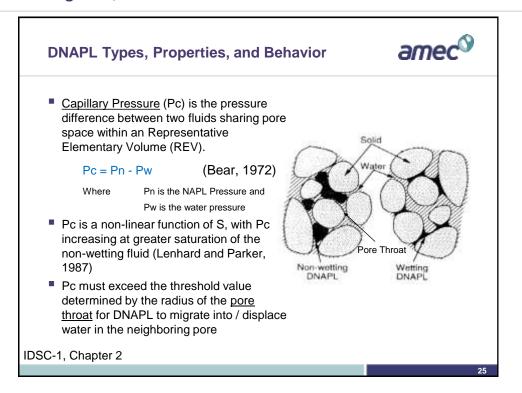

Gaseous-Aqueous Partitioning

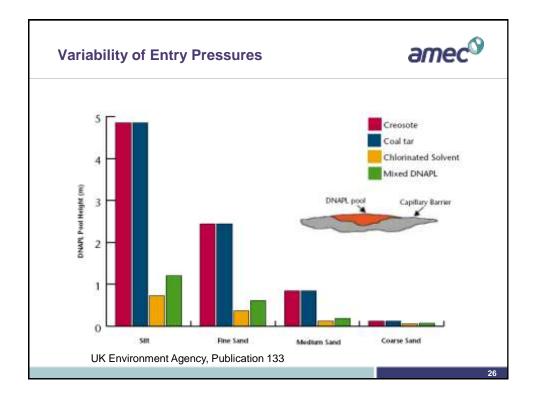

- Many DNAPLs have high vapor pressures
- High volatility compounds can generate vapor phase plumes
- Vapor plumes can migrate in the subsurface
- Vapor plume can transfer contaminant mass to soil and across the capillary fringe to groundwater
- Vapor plumes become trapped and spread below slabs and pavement
- Vapor Intrusion is an important exposure pathway

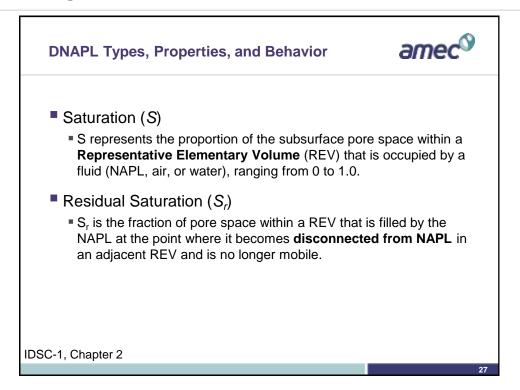
Liquid	Henry's Constant d	Vapor Pressure atm
TCFM	3.63	1.06
CTET	1.19	0.12
1,1-DCA	0.23	0.30
1,2-DCA	0.04	0.11
1,1,1-TCA	0.70	0.13
1,1-DCE	1.068	0.80
1,2-DCE, cis; trans	0.153; 0.375	0270; .414
TCE	0.39	0.099
PCE	0.72	0.021
1,4-dioxane	0.039	0.0002
Vinyl chloride	1.137	3.44
Chlorobenzene	0.146	0.0116
Benzene	0.228	0.132
PCB Mo	stly from 0-08 kow and	Cherry 10 ⁻⁵

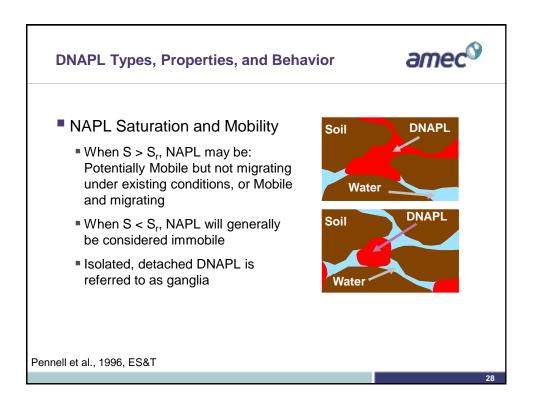


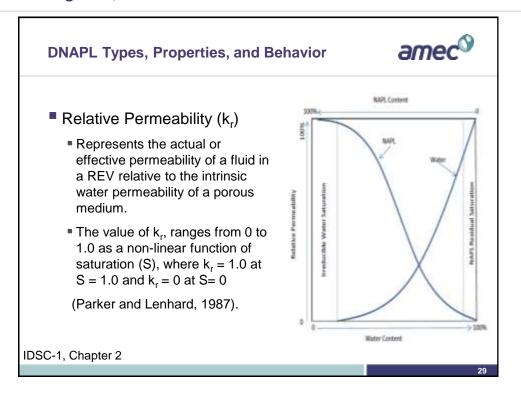


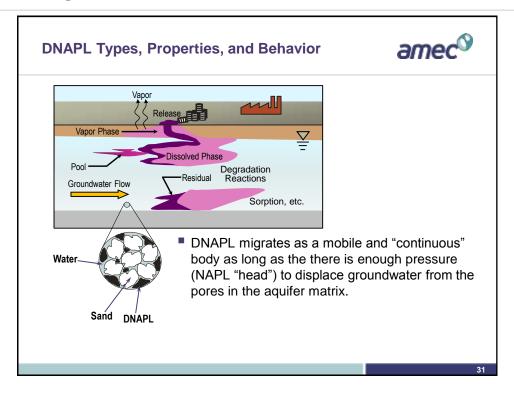

Koc Values			amec [⊗]
	Liquid	Koc ml/g at 25°C	
	TCFM	159	
	CTET	439	
	1,1-DCA	30	
	1,2-DCA	14	
	1,1,1-TCA	152	
	1,1-DCE	65	
	1,2-DCE, cis; trans	86; 59	
	TCE	126	
	PCE	364	
	Vinyl chloride	56	
	Chlorobenzene	330	
	Benzene	60	
	PCB	High, high affinity for soil	
Mostly from Pankow and 0	Cherry		
			20

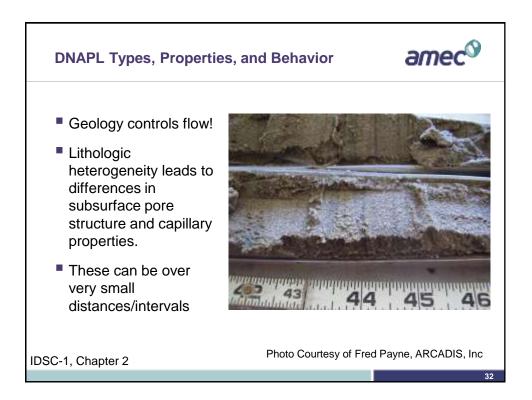


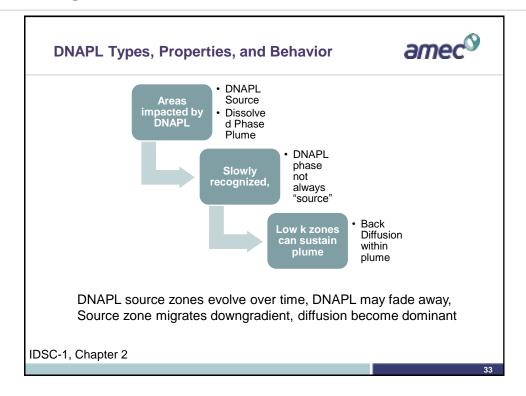

osities	an
Liquid	centiPoise at 25°C – water = 1.0
1,1-DCA	0.50
1,2-DCA	0.84
1,1,1-TCA	0.84
1,1-DCE	0.36
1,2-DCE, cis; trans	0.48; 0.40
TCE	0.57
TCE with oil and grease at 25%	0.78
PCE	0.90
Benzene	0.61
Chlorobenzene	0.80
Creosote	20 to 50
PCB	10 to 50
#6 Fuel Oil	2,300
Coal Tar	20 to 100 and higher
From IT	RC IDSC

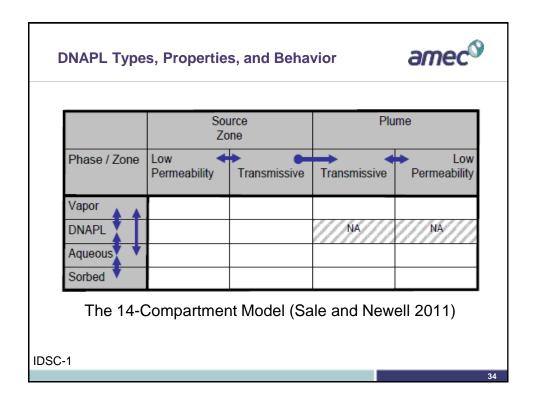


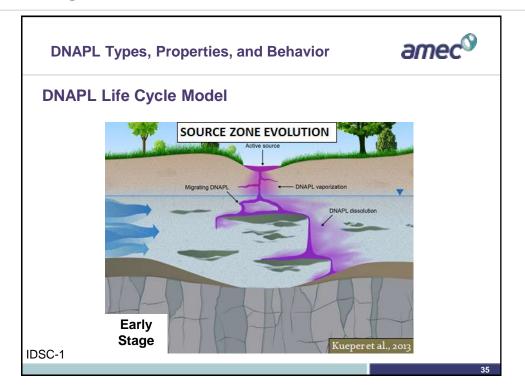


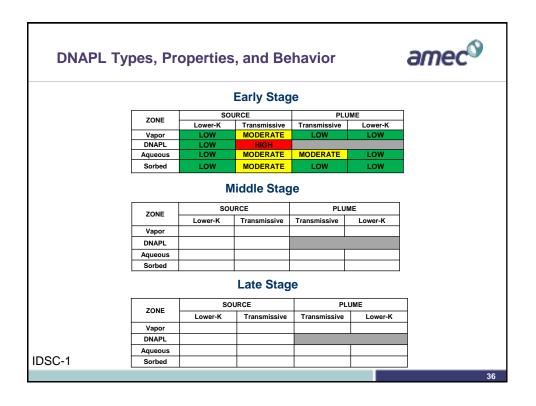


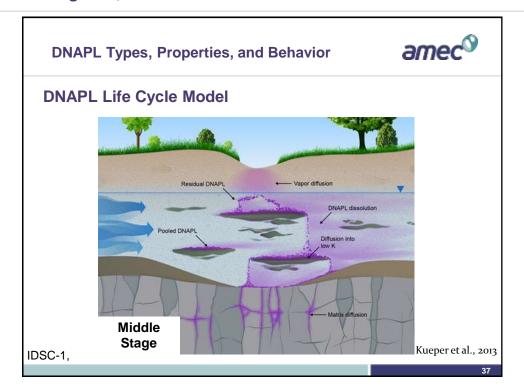


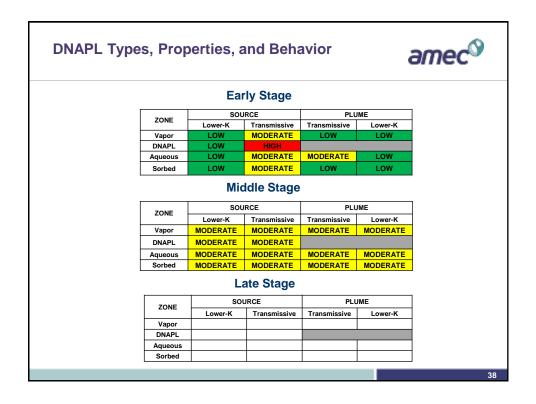


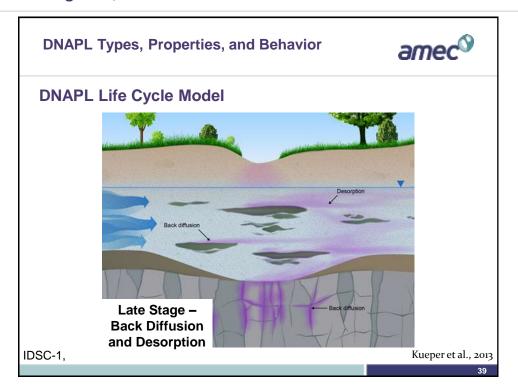


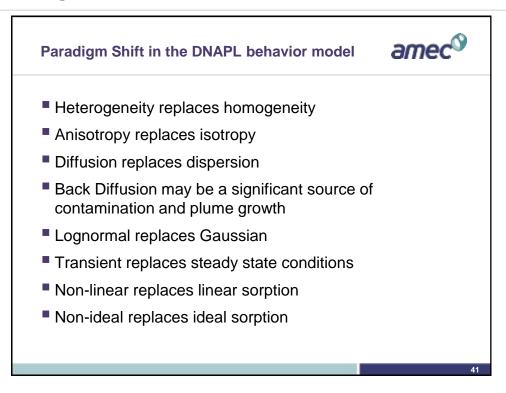


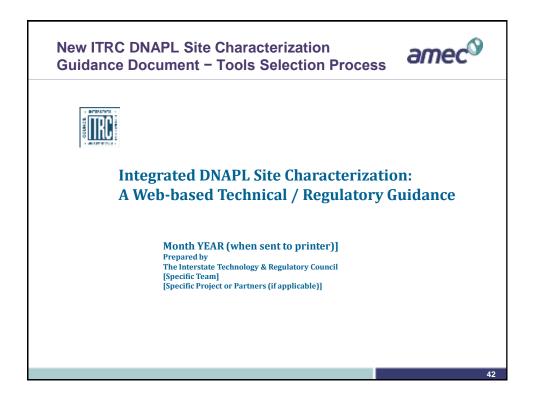


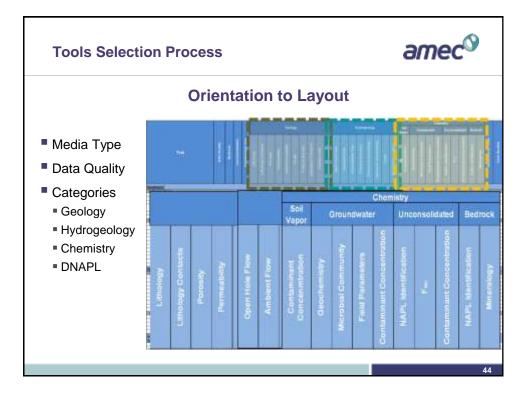


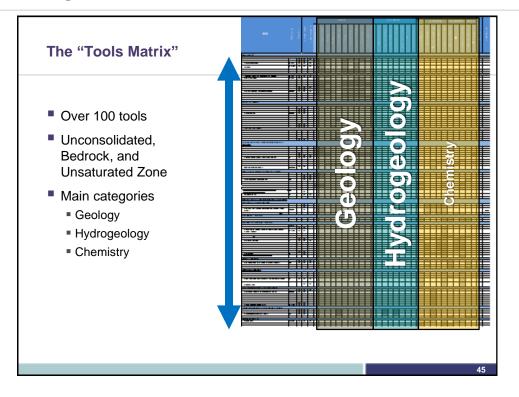


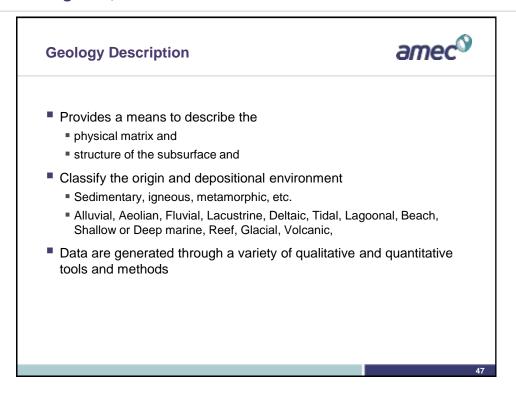




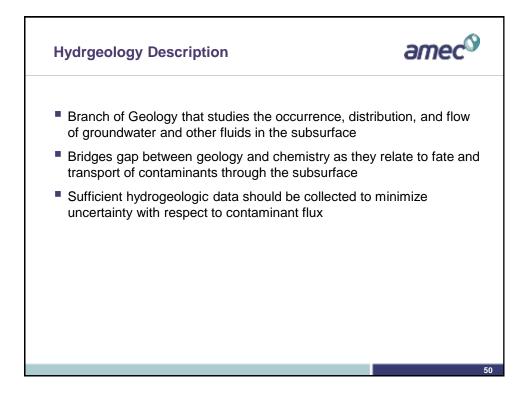




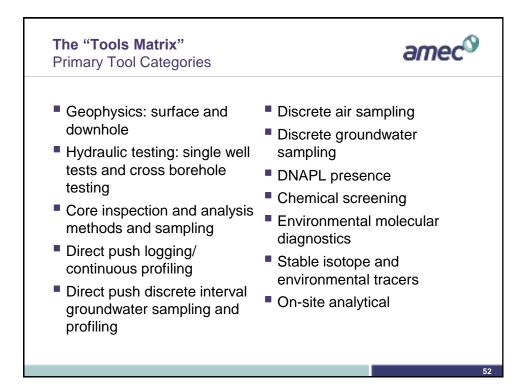

DNAPL Types	s, Pro	perties, a	and Beh	avior		amec [®]
			Early Stag	je		
		SOUF	CE	PLUM	/E	1
	ZONE	Lower-K	Transmissive	Transmissive	Lower-K	
	Vapor	LOW	MODERATE	LOW	LOW	
	DNAPL	LOW	HIGH			
A	Aqueous	LOW	MODERATE	MODERATE	LOW	
	Sorbed	LOW	MODERATE	LOW	LOW	
	ZONE	sou	-	je PLU	ME]
	LONE	Lower-K	Transmissive	Transmissive	Lower-K	
	Vapor	MODERATE	MODERATE	MODERATE	MODERATE	
	DNAPL	MODERATE	MODERATE			
4	Aqueous	MODERATE	MODERATE	MODERATE	MODERATE	
	Sorbed	MODERATE	MODERATE	MODERATE	MODERATE	
	·		Late Stag	je		
	ZONE	SOL	JRCE	PL	UME	
	ZUNE	Lower-K	Transmissive	Transmissive	Lower-K	7
	Vapor	LOW	LOW	LOW	LOW	
	DNAPL	LOW	LOW			
	Aqueous	MODERATE	LOW	LOW	MODERATE	
	Sorbed	MODERATE	LOW	LOW	MODERATE	
						40

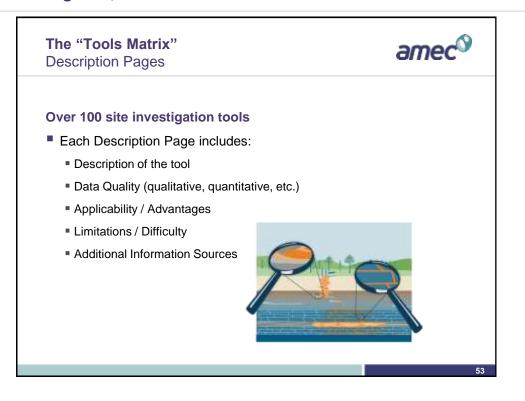


The "To	e "Tools Matrix"																				amec [©]													
True -	-	(44444)		(Beneficial States)			-	1	-	1	Testime		-			at the second se			- Normal Party of the local division of the	1	Ŧ	A section of			Annual I	(Accession)		S	2		1		-	
utors.	1				-	_	1.0	-	-	-	-	-	-	-	1		-		1	-	-	_	-	1		-	14			PA D	-	1.0		
		スキ さ ちち ちちちちちちちちちちちちち	AND AND IN ANALAS	ステ えるのえ えいえいそうで																														
The control of the co		~~~~																																
And and the second seco	1.2									-	1		ī	I		1									1									

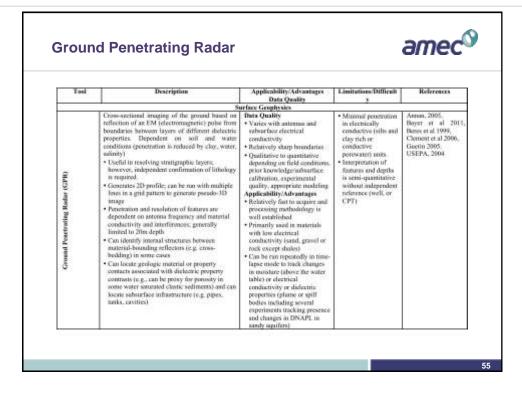


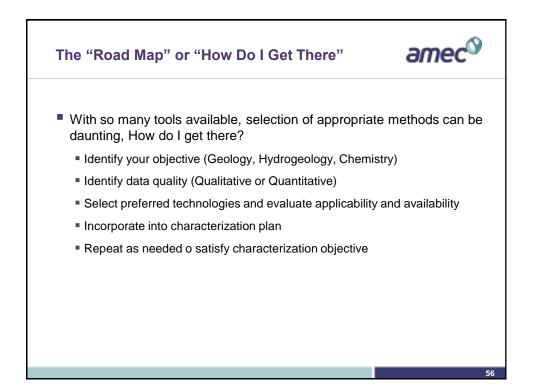
Geology										ć	эл	ne	c٩	
Click on a Categ	ory	<u></u>												
									Geo	logy				
ΤοοΙ	Data Quality	Bedrock	Unconsolidated	Unsaturated zone	Lithology	Lithology Contacts	Porosity	Permeability	Dual Permeability	Faults	Fractures	Fracture Density	Fracture sets	Rock Competence
Geophysics	_	-	_	-	_	_	-	-	-	-	-	_	-	-
Surface Geophysics														
Ground Penetrating Radar (GPR)	QL - Q	\checkmark	\checkmark	\checkmark										
High Resolution Seismic Reflection (2D or 3D)	QL - Q	\checkmark	✓											
Seismic Refraction	QL - Q	\checkmark	\checkmark	\checkmark										
Multi-Channel Analyses of Surface Waves (MASW)	QL-Q	\checkmark	\checkmark	\checkmark										
Electrical Resistivity Tomography (ERT)	QL - SQ	\checkmark	~	~										
	QL	\checkmark	\checkmark	\checkmark										
Very Low Frequency (VLF)	QL			\checkmark										

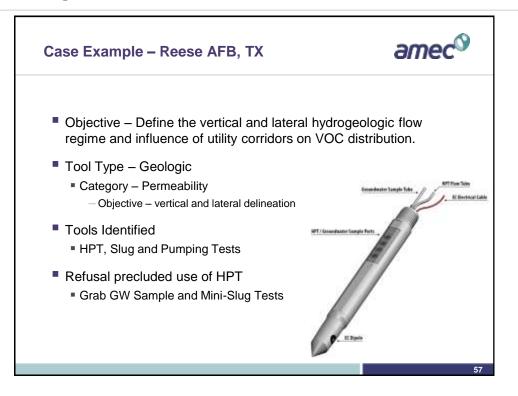


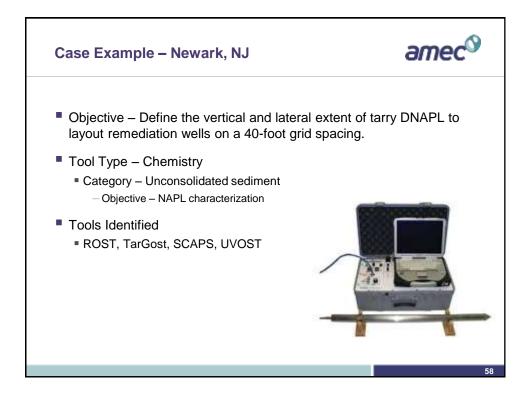

Geology										ċ	эл	ne	c۵	
Tools colle	ct thes	se ty	pes	of ir	nforr	nati	on							
									Geo	logy				
ΤοοΙ	Data Quality	Bedrock	Unconsolidated	Unsaturated zone	Lithology	Lithology Contacts	Porosity	Permeability	Dual Permeability	Faults	Fractures	Fracture Density	Fracture sets	Rock Competence
<u>Geophysics</u>	_	_	_	_	_	\square	_	_	_	_	_	_	_	_
Surface Geophysics														
Ground Penetrating Radar (GPR)	QL - Q	\checkmark	\checkmark	\checkmark										
High Resolution Seismic Reflection (2D or 3D)	QL - Q	\checkmark	\checkmark											
Seismic Refraction	QL - Q	\checkmark	\checkmark	\checkmark										
Multi-Channel Analyses of Surface Waves (MASW)	QL-Q	\checkmark	\checkmark	\checkmark										
Electrical Resistivity Tomography (ERT)	QL - SQ	\checkmark	~	~										
Very Low Frequency (VLF)	QL	\checkmark	\checkmark	\checkmark										
ElectroMagnetic (EM) Conductivity	QL	\checkmark	\checkmark	\checkmark										
			-											

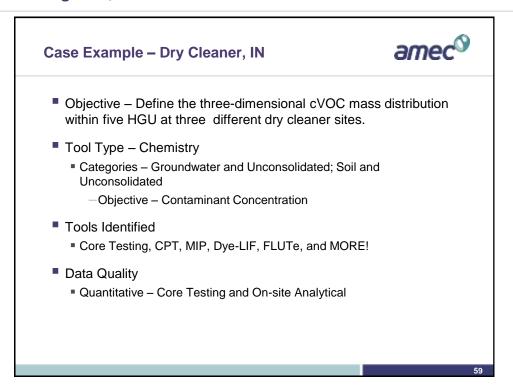
										9		C
			8	ЭС			H	ydrog	jeolo	ogy		
Τοοί	Data Quality	Bedrock	Unconsolidated	Unsaturated zone	Open Hole Flow	Ambient Flow	Groundwater Age	Fracture Aperture	Fracture	Hydraulic Conductivity	Head	Borehole Condition
Hydraulic Testing	_	_	_	-	_	-	_	_	-	-	_	-
Single well tests												
Packer Testing	Q - SQ		\checkmark									
FLUTe [™] Profiling	Q - SQ		\checkmark									
Borehole Dilution	Q - SQ		\checkmark									
Flow Metering	Q - SQ		\checkmark									
			\checkmark	\checkmark								
Pumping and Recovery Tests	Q - SQ		\checkmark									
Slug Tests	Q - SQ		\checkmark									
Constant Head Step Test	Q - SQ	\checkmark	\checkmark									
Cross Borehole Testing												_
Tracer testing	Q - SQ		\checkmark									
Hydraulic Tomography	Q - SQ		\checkmark									
Flow Metering	Q - SQ		\checkmark									-
Pumping and Recovery Tests	Q - SQ		\checkmark									L
Slug Tests	Q - SQ	./	1									1




Chemical Parameters						ĕ	ЭM	ec	9
						CI	nemistry	1	
	v		ted	one	Soil Vapor		Ground	dwater	
ΤοοΙ	Data Quality	Bedrock	Unconsolidated	Unsaturated zone	Contaminant Concenmtration	Geochemistry	Microbial Community	NAPL Presence	Contaminant Concentration
Vapor and Soil Gas Sampling		_	_			_		_	<u> </u>
Passive soil gas surveys	SQ	\checkmark	\checkmark	\checkmark					
Active soil gas surveys	Q - SQ	\checkmark	\checkmark	\checkmark					
Solid Media Sampling and Analysis Methods	L	_	_	_	_	_	_	_	_
Solid Media Sampling Methods									
Split Spoon Sampler	Q - QL	_	\checkmark	√	_	_	_	_	_
Single Tube Solid Barrel Sampler	Q - QL	_	\checkmark	√				_	
Dual Tube Sampler	Q - QL		\checkmark	\checkmark			_	_	
Rock Coring	<u>Q - QL</u>	\checkmark	-	-	_	_		-	
Solid Media Evaluation and Testing Methods									
Core Logging	<u>Q - QL</u>	\checkmark	\checkmark	\checkmark					
Percent Recovery/Rock Quality Designation	<u>Q - QL</u>	\checkmark	\checkmark	\checkmark					
Contaminant Analysis	Q - QL	\checkmark	\checkmark	\checkmark					
Geochemical Composition and Minerology	<u>Q - QL</u>	\checkmark	\checkmark	\checkmark				_	
Physical Properties	<u>Q - QL</u>	\checkmark	\checkmark	\checkmark					
Molecular/Microbial Diagnostics	QL - SQ	\checkmark	\checkmark						






Tools Descriptions										č	ЭЛ	<i>ie</i>	c۵	
	(Clic	k to	jum	p to]								
									Geo	logy				
Tool	Data Quality	Bedrock	Unconsolidated	Unsaturated zone	Lithology	Lithology Contacts	Porosity	Permeability	Dual Permeability	Faults	Fractures	Fracture Density	Fracture sets	Rock Competence
Geophysics	-	_	_	_	_	-	-	-	-	-	_	_	_	-
Surface Geophysics														
	QL - Q	\checkmark	\checkmark	\checkmark										
High Resolution Seismic Reflection (2D or 3D)	QL - Q	\checkmark	\checkmark											
Seismic Refraction	QL - Q	\checkmark	\checkmark	\checkmark										
Multi-Channel Analyses of Surface Waves (MASW)	QL-Q	\checkmark	\checkmark	\checkmark										
Electrical Resistivity Tomography (ERT)	QL - SQ	\checkmark	~	~										
Very Low Frequency (VLF)	QL	\checkmark	\checkmark	\checkmark										
	QL	1	\checkmark	\checkmark										

