

Presentation Overview

- Developing Groundwater Sampling Plans
 - Data Quality Objectives
 - Selecting Monitoring Locations
 - Monitoring Wells
 - New
 - Existing
 - Groundwater Sampling Techniques
 - Low Flow
 - No Purge
 - Grab
 - Sampling Drinking Water
 - Residential
 - Public Supplies
- Data Interpretation
 - Conceptual Site Model
 - Data Quality
 - Interpretation
- Case Studies

Data Quality Objectives

What will the data be used for?

- Presence/absence
- Nature and extent
- Impacts to receptors
- Remedial Options
- Remedial effectiveness/Long Term Monitoring

Data Quality Objectives

What will the data be used for?

- Presence/absence
 - Site Characterization/Site Inspection
 - May be the first investigation
 - Limited subsurface information
 - Need to install wells
 - Previously investigated
 - Have some understanding of the subsurface
 - Wells already installed
 - Sampling program design
 - Sample locations biased
 - Longer well screens

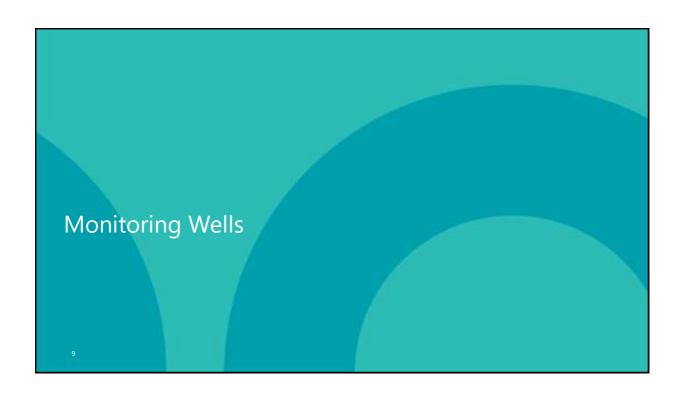
Data Quality Objectives

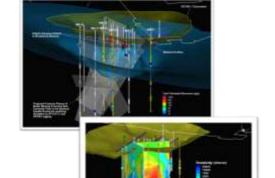
What will the data be used for?

- Nature and extent
 - Remedial Investigation
 - Vertical and horizontal evaluation
 - What are your contaminants of concern?
 - Subsurface conditions
 - Sample program design
 - Discreet sampling
 - Multi level sampling

Data Quality Objectives

What will the data be used for?


- Impacts to receptors
 - Drinking water wells
 - Monitoring well depths representative of drinking water wells in the area
 - Residential sampling
 - Analytical
 - Borehole geophysics
 - Packer sampling
 - Effect of residential pumping
 - Surface water discharge
 - Multi level monitoring points
 - Evaluate gradients
 - Pore water (groundwater/surface water interface)


7 A presentation by Wood.

Data Quality Objectives

What will the data be used for?

- Remedial Options
 - Geochemistry
 - Focused on where the contamination is
 - Borehole geophysics
 - High resolution profiling
- Remedial effectiveness and Long Term Monitoring

Selecting Monitoring Locations

- Data Quality Objectives
- Conceptual Site Model
- In-situ Evaluations
 - Borehole geophysics
 - High resolution profiling
- Existing monitoring locations

Selecting Monitoring Locations

- Borehole Geophysics
 - Structure
 - Interaction between wells
 - Where contaminants might be migrating
 - You are more likely to get it right

11 A presentation by Wood

Selecting Monitoring Locations

- Groundwater profiler
 - VOC
 - Membrane interface probe (MIP)
 - Laser induces fluorescence (LIF) LNAPL/DNAPL
 - Discreet groundwater samples within a foot
 - Allows to more accurately place monitoring wells
- Limitations
 - Expensive

12 A presentation by Wood

Monitoring Wells

- Installing New Wells
 - Data Quality Objectives
 - Contaminants of Concern
 - Screen interval
 - LNAPL or DNAPL
 - Water depth
 - Well diameter needed for pump

13 A presentation by Wood.

Monitoring Wells

- Open hole
- Hybrid
- Multi-Level Monitoring Wells:

- Continuous Multi-channel Tubing (CMT)
- Westbay
- Waterloo System
- Flexible Liner Underground Technologies (FLUTe)
- Multiple-Casing Systems:
 - Nested Wells
 - BARCAD Wells

CMT Well

15 A presentation by Wood

Existing Monitoring wells

- Why was it installed?
 - Is it in the right location to meet your needs?
- Do you know how it was constructed?
 - Bore hole camera
 - Optical televiewer
- When was it sampled last?
 - Redevelop

Low Flow Sampling

 Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells from USEPA September 19, 2017

18 A presentation by Wood.

Low Flow Sampling

- Contaminants of concern
 - Applicable for most
- Pumps
 - Peristaltic
 - <22 feet to water
 - Submersible
 - Grundfos
 - Hurricane
 - Bladder

19 A presentation by Wood.

Low Flow Sampling

- Why are you collecting the field parameters?
 - Indicate the well is at equilibrium with formation water
 - Evaluate specific conditions related to site contamination or migration
 - High or low pH may result in forming other contaminants
 - Conductivity/ORP may be used to evaluate elevated chemicals in the groundwater
 - Dissolved Oxygen discharge or recharge areas

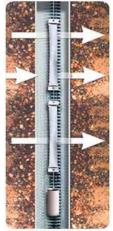
No Purge Sampling

- Assumes water within the screen is at equilibrium
- Most applicable for long term monitoring
- Generally not appropriate during early investigations

21 A presentation by Wood.

No Purge Sampling

- Hydrasleeve™
 - Open LDPE or HDPE bag
 - Valve at the top
 - Installed closed and opens when removed



22 A presentation by Wood.

No Purge Sampling

- Passive diffusion bag
 - LDPE bag with deionized water
 - Left in the well for 2 to 4 weeks
 - COCs
 - VOCs (except MTBE, MIBK and styrene)

A presentation by Wood. http://www.caslab.com/

Grab Samples

- Packer sampling
- Direct push sample point sampler

Grab Samples

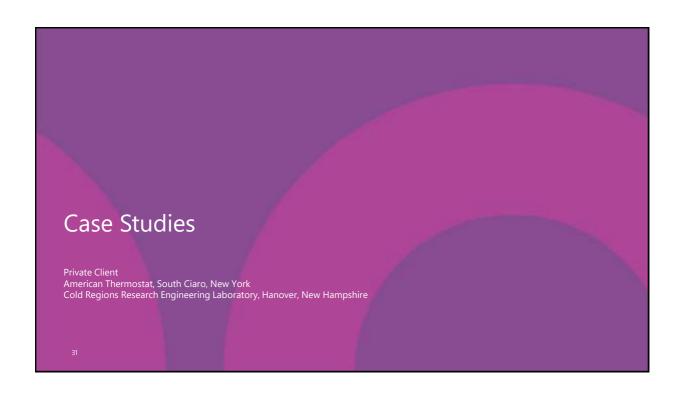
- Data Quality Objectives
- Contaminants of concern
- Limitations
 - Where is the sample coming from?
 - Is the sample representative?

Residential Drinking Water Sampling

- Plumbing
 - Contaminants of Concern
 - Metals (lead and copper)
 - Teflon (PFAS)
 - Is there any treatment?
 - Sediment filters
 - Water softeners
 - Carbon
- Well construction
 - Depth
 - Drilled/dug

27 A presentation by Wood

Data Quality and Interpretation

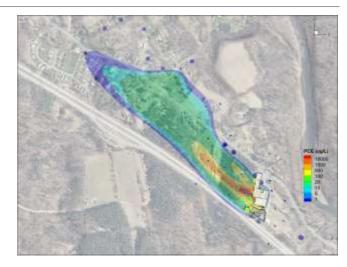

Data Quality

- QA/QC
 - Field Blanks
 - Equipment/Material Blanks
 - Rinsate Blanks
 - Duplicate

29 A presentation by Wood.

Data Interpretation

- · Conceptual site model
 - Does the data fit?
- QA/QC
 - How do the results affect usefulness of the data?
- Sampling methods
 - Turbidity
 - Pumps
 - Field parameters

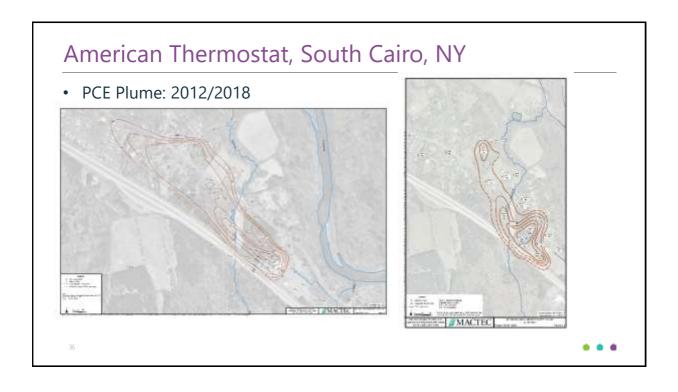


- Extensive groundwater sampling
- Geophysics and 3-D Visualization
 - Identified the most transmissive fractures
- Allowed focused insitu treatment
 - Concentrations reduced and have met the clean up criteria

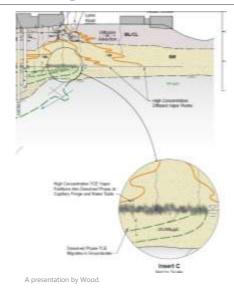
• • •

American Thermostat, South Ciaro, NY

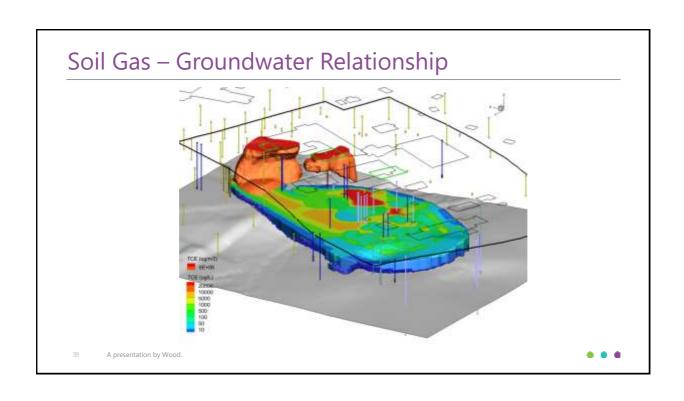
- Background
 - PCE and TCE
 - Investigations conducted beginning in the early 1980s
 - Remediation completed in the late 1990s
 - Groundwater plume ~3,000 feet

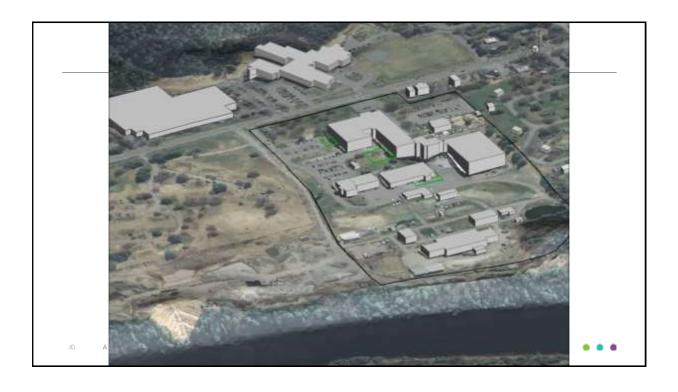


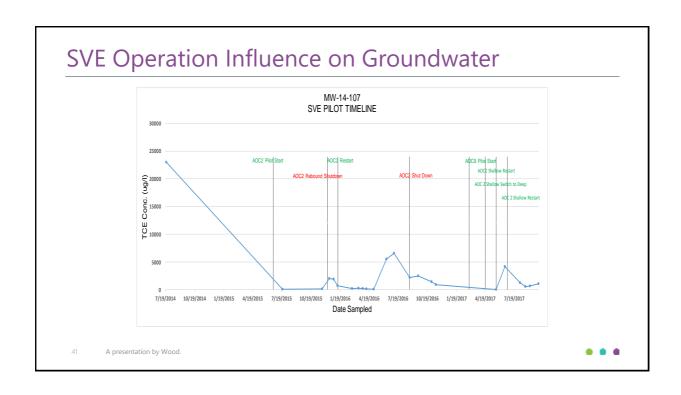
33 A presentation by Wood.


• American Thermostat, South Cairo, NY

A presentation by Wood.




Cold Regions Research Laboratory, Hanover, NH



- TCE site with initial investigations in the 1980s- 1990s
- Existing mw network inadequate to characterize what was going on with the groundwater plume, did not span the vertical extent of the plume in the overburden
- Conducted groundwater profiling
- Showed higher levels of contamination at the vadose zone interface

Well MW-14-107 MW-14-107 SB-101 Groundwater Profile 100000 10000 Concentration [Jug/m3] = 13119x lini 5-10M µg/m3 $R^2 = 0.9937$ 2 65,000 µg/L 10 23,000 µg/L 310 µg/L 96 µg/L • 38 µg/L

Summary

- Where are your samples coming from?
- What does your data mean?

