The Atlas Tack Site: Enhanced Wetland Mitigation as Part of a Superfund Remedy

Ken Finkelstein, NOAA Office of Response and Rest. Boston, MA Elaine Stanley EPA Region 1 Boston, MA

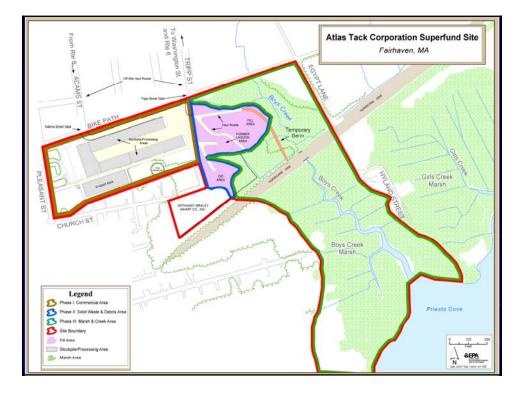
3

Site Background

- Atlas Tack Corporation operated from 1901 to 1985
- Site is comprised of approx. 48 acres
- Manufactured wire tacks, steel nails, rivets, bolts, and similar items
- The facility's operations included electroplating, acid-washing, enameling and painting

Site Background (con't)

- From 1940 to 1980, wastewater was discharged into floor drains, on-site lagoon and adjacent wetland
- Solid and liquid wastes were disposed of on-site and also filled in a portion of the wetland



Contaminants of Concern

Metals:

cadmium, chromium, copper, nickel, lead and zinc

- Cyanide
- PCBs (in soils)
- sVOCs mainly PAHs (in groundwater)
- VOCs mainly toluene (in groundwater)
- Pesticides (low concentrations)

Phase I: Specific Buildings

Phase II: Solid Waste and Disposal Area – 9 acres

- Excavation and off-site disposal of approx.
 38,000 cubic yards of contaminated soil and debris in the Solid Waste and Disposal Area
- Contaminated soil and debris disposed offsite
- Cost \$14,000,000
- Completed April 2007

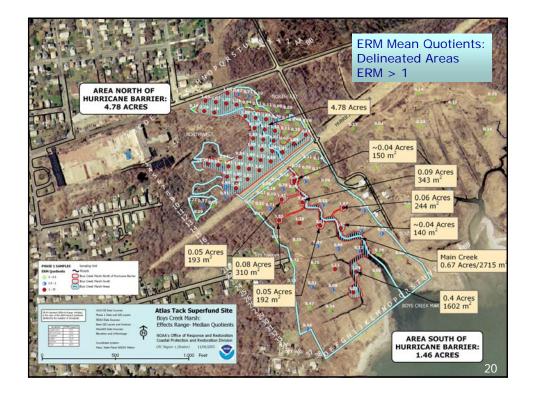
10

6

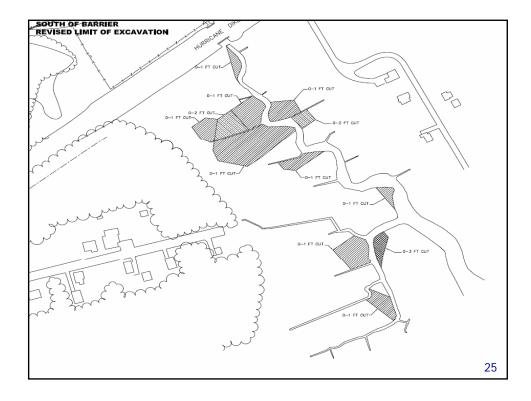
Environmental Risks

- Movement of contamination to groundwater, surface water and creek sediment from Commercial Area, Solid Waste & Disposal Area, and marsh surface soil
- Exposure of biota to contaminated surface soil & sediment in Solid Waste & Disposal Area and Marsh Area and to contaminated Boys Creek surface water & sediment.

all concentrations in to	Analyte Freshwater Sediment						Marine Sed						fiment				
All concentrations in parts per billion unless specified otherwise		"Background"	ARCS H. azteca TEL »	Consensus TEC «	TEL b	LEL 9	Consensus PEC *	PEL ^b	SEL 9	UET	T20 ¢	TEL 4	ERL f	T30 •	PEL 4	ERM f	AET 1
Numinum (%)	AI	0.26%	2.55%														1.8% N
Antimony	Sb	160								3,000 M	630			2,400			9,300 E
Arsenic	As	1,100	10,798	9,790	5,900	6,000	33,000	17,000	33,000	17,000 I	7,400	7,240	8,200	20,000	41,600	70,000	35,000 B
Barium	Ba	700										130,100#					48,000 A
Sadmium	Od	100-300	500	990	596	600	4,900	0,500	10,000	3,000 I	000	600	1,200	1,400	4,210	9,600	0,000 N
Chromium	Cr	7,000-13,000	36,286	43,400	37,300	26,000	111,000	90,000	110,000	95,000 H	49,000	52,300	81,000	141,000	160,000	370,000	62,000 N
Cobalt	Co	10,000				50,000+											10,000 N
Sopper	Cu	10,000-25,000	28,012	31,600	35,700	16,000	149,000	197,000	110,000	86,000 I	32,000	18,700	34,000	94,000	108,000	270,000	390,000 MC
ron (%)	Fe	0.99-1.8 %	18.84%			2%			4%	4% I							22% N
.ead	Pb	4,000-17,000	37,000	35,800	35,000	31,000	128,000	91,300	250,000	127,000 H	30,000	30,240	46,700	94,000	112,000	218,000	400,000 B
langanese	Mn	400,000	630,000			460,000			1,100,000	1,100,000 I							260,000 N
dercury	Hg	4-51		180	174	200	1,060	486	2,000	560 M	140	130	150	480	700	710	410 M
Nickel	Ni	9,900	19,514	22,700	18,000	16,000	48,600	36,000	75,000	43,000 H	15,000	15,900	20,900	47,000	42,800	51,600	110,000 EL
ielenium 🛛	Se	290															1,000 A
Silver	Ag	<500				500 +		_		4,500 H	230	730	1,000	1,100	1,770	3,700	3,100 B
Strontium	Sr	49,000															
fin :	Sn 17	5,000										48 *	_				> 3,400 N
lanadium 		50,000		404.000	400.000	400.000	470.000			500 000 M	04.000	40.4.000	4.50,000	0.45.000	074 000	440.000	57,000 N
Zinc Lead 210	Zn	7,000-38,000	98,000	121,000	123,000	120,000	459,000	315,000	820,000	520,000 M	94,000	124,000	150,000	245,000	271,000	410,000	410,000 I
ead Ziu ¶a dw						0.5 *			< 9.7 ª								
Polonium 210						0.6 °			< 8.7 *								
Radium 226 Þal _g dov						0.1 *			< 13 *								
Sulfides										130,000 M							4,500 MO


$$ERM-Q = \frac{1}{n} \sum_{i=1}^{n} \frac{COC_i}{ERM_i}$$

Chemical = Station	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	ER-M Quotient
ER-M =	9.6	370	270	218	52	410	
N-24 (a)	1.94	384	1800	465	104	2340	17.8/6 = 3.0
L-34 (a)	4.88	138	903	303	72	1150	9.8/6 = 1.6
P-22 (b)	0.5	627	2450	640	75	1670	18/6 = 3.0
L-18 (b)	0.3	80	730	173	30	405	5.4/6 = 0.9
P-18 (b)	0.4	158	611	179	37	509	5.5/6 = 0.9
Q-29 (c)	4.79	156	944	221	94	1300	10.4/6 = 1.7
L-31 (c)	6.71	64	364	117	88	872	6.6/6 = 1.1
M-31 (c)	13.50	127	1040	215	109	1220	11.8/6 = 2.0


Non-Toxic Data Set (mg/kg)

Chemical = Station	Cadmium	Chromiu m	Copper	Lead	Nickel	Zinc	ER-M Quotient
ER-M =	9.6	370	270	218	52	410	
S-25 (d)	1.5	27.1	291	216	21.8	228	3.2/6 = 0.5
R-24 (e)	0.32	277	458	349	42	627	6.4/6 = 1.1
S-09*	0.87	2.7	3.6	27	2.1	26.9	0.35/6 = 0.06
S-05*	1.46	6.6	8.2	9.8	5.7	17.3	0.45/6 = 0.08
S-04*	1.43	15.7	76.8	118	10.8	54.1	1.32/6 = 0.22
							18

11

