Evaluating Innovative Technology for Municipal Waste Management

Presented to Northeast Waste Management Officials' Association (NEWMOA)

November 27, 2007

Steven Torres, Esq. City of Taunton. MA cotlawdept.tmlp.net

James J. Binder, P.E. Alternative Resources, Inc. Concord, MA jbinder@alt-res.com

Table of Contents

- 1.0 Introductions
- 2.0 Review of Technology Options for Post-Recycled MSW Management
- 3.0 Differentiating Between Conversion Technologies and Incineration Technologies
- 4.0 The Promise
- 5.0 Hurdles
- 6.0 Facility Pictures

1.0 Introductions

- Steven Torres, City Attorney Taunton, Massachusetts Representing City Project to Replace Landfill
- Jim Binder, P.E., Principal Alternative Resources, Inc.; Independent Consulting Firm; Focus Solid Waste Management, including New and Emerging Technologies; Studies for NYC, LA County, CRRA, City/County of Santa Barbara, Taunton

- Conventional
 - Transfer
 - Composting/Co-composting
 - Waste-to-Energy
 - Landfill

- New and Emerging Conversion Technologies
 - Thermal
 - Biological
 - Chemical
 - Hydrolysis
 - Other

2.0 Technology Categories

• Thermal

- Use or produce heat to change the composition of MSW
- Products include synthesis gas, char and organic liquids
- Descriptors: gasification, pyrolysis, cracking and plasma

• Digestion (Aerobic and Anaerobic)

- Decomposes organic fraction of MSW using microbes
- Produces biogas and compost
- Aerobic digestion produces compost

• Hydrolysis

- Chemical reaction in which water (typically with acid) reacts with another substance to form new substances
- Extracts cellulose from MSW to form products or sugar which is fermented to ethanol
- Some products include ethanol, levulinic acid

Chemical Processing

- Example: depolymerization converts organic fraction into energy, oil, specialty chemicals, carbon solids
- Mechanical Processing for Fiber Recovery
 - Recovers fiber from MSW for paper making

- In Addition to Conventional Technologies, Why Consider New and Emerging Conversion Technologies?
 - Environmental benefits, including reduction in greenhouse gas and other emissions
 - Enhanced beneficial use of waste; less waste requiring transfer and landfilling
 - Production of needed "renewable" products with strong, year-round markets
 - Electricity
 - Gas
 - Fuels CNG, LNG, ethanol, hydrogen

Examples of New and Emerging Technology Options Thermal

<u>Thermal</u>

- Bioengineering Resources, Inc.
- Ebara Corporation
- GEM America
- Geoplasma
- International Environmental Solutions
- Interstate Waste Technologies/Thermoselect
- NTech Environmental
- Plasco Energy Group
- Primenergy, LLC
- Rigel Resources Recovery and Conversion Co./Westinghouse
- Ze-Gen

Biological

- ArrowBio
- Canada Composting
- Organic Waste Systems/DRANCO
- Orgaworld
- Waste Recovery Systems, Inc./Valorga

Chemical

Changing World Technologies

<u>Hydrolysis</u>

- Arkenol/Blue Fire Ethanol
- Biofine
- Masada OxyNol

<u>Other</u>

- Herhof GmbH
- World Waste Technologies

- Examples of Public Initiatives, New and Emerging Technologies
 - NYC
 - LA County
 - City of Los Angeles
 - St. Lucie County, Florida
 - Santa Barbara County, California
 - Connecticut Resources Recovery Authority
 - Delaware Solid Waste Management Authority
 - City of San Diego

2.0 <u>NYC Phase 1 Summary of</u> Findings (September 2004)

Development Status of Innovative Technologies by Category			
Technology Category	Commercial Use Outside U.S. for MSW	Pilot Testing with MSW	
Anaerobic Digestion	\checkmark	~	
Thermal Processing	\checkmark	~	
Hydrolysis		\checkmark	

2.0 <u>NYC Phase 1 Summary</u> of Findings

Comparison of Commercially Adanced New and Emerging Technologies (Anaerobic Digestion and Thermal Processing) to Modern Waste-to-Energy

Criteria	Advantageous	Comparable	Disadvantageous
Emissions	✓		
Public Acceptability	\checkmark		
Residuals Requiring Disposal	\checkmark		
Beneficial Use of Waste	✓	~	
Cost		~	
Ownership Preferences		~	
Risk Allocation		~	
Utility Needs		~	
Facility Size and Flexibility		~	~
Acreage Required		~	~
Experience of Sponsors		~	~
Readiness and Reliability			~

2.0 NYC Phase 2: Summary of Economic/ Financial Evaluation (March 2007)

- Planning level economic analyses indicate that anaerobic digestion and thermal processing technologies, on a commercial scale, are comparable to or less costly than costs for current export practices
- Projected cost for export practices (2014) = \$124/ton
- Projected tipping fee for private ownership and financing (2014):
 - Anaerobic digestion (sale of compost) = \$56-\$80/ton
 - Anaerobic digestion (compost disposed) = \$72-\$108/ton
 - Thermal processing = \$103-\$165/ton
- Projected tipping fee for public ownership and financing (2014):
 - Anaerobic digestion = \$43-\$65/ton
 - Thermal processing = \$76-\$129/ton
- Corporate teaming experience in the U.S. continuing to develop for the technology suppliers

2.0 LA County Phase II: Products and Residue (October 2007)

Technology Supplier	Residue Generated*	Types of Products Generated
ArrowBio	13%	Recyclables Biogas Electricity or Vehicle Fuel Compost
CWT	18%	BioDiesel Fuel Oil (light distillate to heavy fuel oil) Fuel Gas Carbon Fuel
IES	10%	Fuel Gas Electricity
IWT	0%	Syn Gas Electricity or Fuels Sulfur Salts Zinc Concentrate Metals & Minerals
NTech	2%	Recyclables Oil Fuel Gas Electricity

* % by Weight of MSW received for processing and requiring landfilling

2.0 <u>LA County Phase II: Project</u> <u>Concepts by Technology</u> <u>Supplier (October 2007)</u>

Technology Supplier	Proposed Facility Size	Site Size	Estimated Tipping Fee
ArrowBio	300 TPD	4 acres	\$50/ton ⁽¹⁾
	1050 TPD	12 acres	\$50/ton ⁽¹⁾
CWT	220 TPD	3 acres	\$60/ton
	1000 TPD	5.8 acres	not provided
IES	125 TPD	1 acre	\$56/ton ^{(1), (2)}
	(prepared)		
	242 TPD (as		
	received)		
IWT	312 TPD	3.5 acres	\$131/ton
	623 TPD	5 acres	\$70/ton
	935 TPD	8 acres	\$59/ton
NTech	413 TPD	3.5 acres	\$55/ton ⁽¹⁾

⁽¹⁾ Integrated pricing with MRF, considers use of existing scales, roads and site infrastructure at MRF.

⁽²⁾ Assumes waste feedstock is preprocessed by MRF to 2" in size, glass, metal removed.

2.0 <u>Net Energy Production</u> and Landfill Diversion

Net Energy Production

	Net Electric Output	1,000 TPD 100% Availability	
Gasification	500 – 800 kWh/Ton	21 – 33 MWe	
Anaerobic Digestion	250 kWh/Ton	10 MWe	
Acid Hydrolysis	31 Gal/Ton	11 Million Gal/Year	

Landfill Diversion (By weight)		
Gasification	> 90%	
Anaerobic Digestion	> 75%	

2.0 <u>Comparison</u> of Air Emissions

	Conversion Technology as Compared to Incinerators in Massachusetts*
Dioxin	10 to >100 times less
Mercury	1 to 50 times less
Nitrogen Oxides (Precursor to Ozone)	Approximately 10 times less

* Data from 2006 Solid Waste Master Plan

3.0 <u>Thermal Conversion</u> (Gasification) is not Incineration

Criteria	Thermal Conversion	Incineration
1. Combustion of Solid Waste	No	Yes
2. Ash Residual	Little – No Ash	25 – 30%
3. Potential to capture gases to make fuels	Yes	No
 Potential to pre-clean gases prior to combustion 	Yes	No
5. Air Emissions	Reduced	
6. Diversion of waste from landfilling	> 90%	70-75%
7. Marketable products	Electricity, steam, fuels, vitrified aggregate, minerals	Steam, Electricity
8. Potential to install combined cycle generation to increase energy output	Yes	No

4.0 The Promise

- Next generation of technology
- Not perfect, but better than existing alternatives
- Lower emissions
- Reduction in amount waste landfilled
- Enhances recycling and conversion of waste for beneficial use
- Provides source of renewable energy

5.0 <u>Hurdles</u>

- Lack of commercial demonstration in US
- Lack of development/acceptance for certain product markets in US or regulatory hurdles for product use
- Applicability of regulations for environmental permitting is unclear, non-existent, or inadvertently problematic
- Qualification for renewable energy credits for power sale is not consistent
- Need for public education

<u>Example</u> <u>Illustrations/Schematics</u> <u>of New and Emerging</u> <u>Technologies</u>

IWT – Chiba, Japan 330 TPD (Operating since 1999)

IWT – Thermoselect Schematic Diagram

GEM America – Pilot Converter, South Wales 40 TPD (Operated in 2001-2002)

GEM America – Schematic Diagram

IES – Romoland, CA 50 TPD (Operating since March 2005)

Entech Integrated Process Layout

Kinetic Streamer Wastec Facility, York UK (Operating since January 2005)

Gasifier and Thermal Oxidizer Entech Facility, Bydgoszcz, Poland 25 TPD – Hospital Waste (Operating since February 2003)

NTech – Malaysia 67 TPD

Rigel Waste Conversion System: Westinghouse Plasma System (Operating since 2004, Utashinai, Japan)

ArrowBio – Anaerobic Digestion System Tel Aviv 110 TPD (Operating since 2003)

Separation/Processing ArrowBio, Tel Aviv

Tipping to Process ArrowBio, Tel Aviv

Primary Flotation ArrowBio, Tel Aviv

Digestion Tanks ArrowBio, Tel Aviv

Soil Amendment Results

ArrowBio, Tel Aviv

Reciprocating Engine/Gen Set ArrowBio, Tel Aviv

ArrowBio – Artist Rendering for Sydney, Australia 300 TPD

ArrowBio Jacks Gully Sydney, Australia May 2007

ArrowBio Jacks Gully Sydney, Australia November 2007

CWT – Process Equipment Carthage, MO 250 TPD (Operating since February 2005)

Changing World Technologies – Process Steps

CWT – Oil Products

