
Farshad Ebrahimi 
Ph.D. Candidate in Environmental Engineering
Civil & Environmental Engineering Department

Temple University
April 2021 

Linking PFAS partitioning behavior in sewage solids 
to the solid characteristics, solution chemistry, and 

treatment processes
TempleUniversity
Å Dr. RominderSuri,Dr. EricaR. McKenzie

DrexelUniversity
Å AsaLewisandDr. ChristopherSales

Financialsupport
ÅWaterResearchFoundation(award#5002)
Å NationalScienceFoundation(award#CBET-1805588)

Å ArmyResearchOfficeDURIP(award#W911NF1910131)



2

Introduction

Poly- and perfluoroalkyl substances (PFAS)

ÅSynthetic compounds

ÅUsed in various consumer goods 
for over 50 years

ÅHighly fluorinated alkyl chain

ÅUbiquitous
ÅDetected both in human & animals

ÅWastewater, surface water, and oceans

ÅGlobally transported

ÅPersistent
ÅWill not easily degrade

ÅBioaccumulative
ÅPartition into biotic tissue

ÅToxic
ÅNegatively affect biological health

ÅPotential link to cancer
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Introduction

SOURCES:TOXIC-FREE FUTURE; EPA

Å> 4000 compounds
ÅUsually present in charged form (primarily 

anions)
ÅSurfactant behavior
ÅAbility to partitioning into solids such as soil, 

sediment, sludge, and biosolids

https://toxicfreefuture.org/science/chemicals-of-concern/pfas-nonstick-nightmare/
https://www.epa.gov/pfas/basic-information-pfas
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Introduction
Å > 7 million tons of biosolids are either directly applied to agricultural land (~60%) or disposed (~40%) (Northeast 

Biosolid and Residual Association, 2004)

Å > 3,000 kg PFAS/yr released (Venkatesan and Halden, 2013)

Å PFOA and PFOS concentrations: up to 68 ng/g and 219 ng/g in activated sludge (Venkatesan and Halden, 2013)

PFOS mass flowrate (mg/day within WWTP)
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The first phase of the project:
Looking at a variety of potentially effective parameters  



Looking at a variety of potentially 
effective parameters:  
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Experimental Design and methods

Å14 PFAS evaluated ςhead group, chain length, and fluorinated 
regions

ÅSolution chemistry ςpH, ionic strength, calcium concentration

ÅTreatment process ςsecondary treatment (4) and stabilization (3)

ÅSmall: < 10 MGD

ÅMedium:  10 ς20 MGD

ÅLarge: > 20 MGD

Sludge sample Biosolid sample Size

Activated sludge_A NA Small

Activated sludge_B NA Medium

Activated sludge_C Class B anaerobic digestion_C Small

Trickling filter_D Class A composting_D Small

Trickling filter_E NA Medium

BNR_F Class A composting_F Small

BNR_G Aerobic Digestion_G Large

BNR_H Class A composting_H Small

BNR_I Aerobic Digestion_I Medium

Rotating biological contactors_J NA Small



Experimental design

Isotherm- Equilibrium study
ÅIntensive ς7 concentrations

ÅLimited ς1 concentration

Sample

ω200 mg wet weight solids

Solution

ω50 mL solution

ωPFAS amended 

Vials

ω50 mL PP vials

Equilibrium

ωMixed for 7 days 

Edge- Testing solution parameters

ÅpH: 6, 7, and 8

ÅIonic strength: 1, 10, 100 mM NaNO3

ÅCa2+: 0.33, 3.3, 33 mM Ca(NO3)2
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Sample processing

Collection

ωDecant 
supernatant

ωBasic methanol 
for extraction

Sonication

ω1 hr at 60 o

Celsius

Mix 

ωShake for 2 hrs

ωRepeat x2

Nitrogen 
Evaporator 

ωTo dryness

Clean-up

ωReconstitute 
with acidic 
methanol

ωEnviCarb

Analysis prep

ω300 ˃ L extract + 
300 ˃ L dilution 
water

QTOF

ωSCIEX x500r 
QTOFS

O
L

ID
S

*

Collection

ωMixed sample

Centrifugation

ωCentrifuge 50 ml 
vials at 2000 G for 
20 mins

Subsampling

ωSubsample for 
metals, pH and 
conductivity 
analysis

PFAS liquid 
processing 

ωSubsample 300 ˃L 
and add 300 ˃L 
MeOHwith IS

Centrifugation

ω12000 rpm for 20 
mins

Analysis prep

ωTransfer 100 ˃L  to 
LC vials

ωArchive rest

QTOF

ωSCIEX x500r QTOF

A
Q

U
E

O
U

S

*
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PFAS quantification using LC-QTOF/MS

A chromatogram of the standards achieved in the lab

8 ×

4 ×

2 ×



11

ὅ ὃὅ Linear

ὅ ὑὅ Freundlichmodel

The linear model prevailed
This can occur as a result of:
Å Substantially porous texture 
Å No concentration effects 

PFAS partitioning behavior in sludge/biosolid 

a. Examples of isotherm model fittings (linear and Freundlich) in RBC_J sludge sample;  
b. Distribution of best-fit isotherm models across sludge and biosolid samples
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PFBA, PFOA, PFHxS, and PFOS partitioning coefficients across different secondary 

treatments (10 sludge samples with isotherm experiments conducted in reference 

solution)

üNo significant effects on 
PFAS Kd

üEffects may be canceled out 
by:

ÅVariable influent source
ÅSludge compositions

Partitioning behavior in secondary sludge
ὑ

ὅ

ὅ
Ƞ×ÈÅÒÅὅὭίὸὬὩίέὰὭὨὧέὲὧȢ

ὥὲὨὅὥήόὩέόίὧέὲὧȢ
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Partitioning behavior in biosolid

ü Kd order: anaerobic digestion > aerobic digestion > composting

PFAS partitioning coefficients across different sludge stabilization methods
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ü Stabilization decreases the PFAS 
sorption capacity significantly

ὑ comparison among paired-biosolid sludge samples in plant D. Partitioning 

experiments conducted in reference solution (200 ng spiking of suite of PFAS).

Sludge stabilization effects on partitioning behavior
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ü Elevated mono- and divalent cations 
increased PFAS Kd

ü High pH decreased PFAS Kd

ü Protein was stronger predictor of PFAS Kd

than organic matter or lipid fraction.

Solution and solid-specific effects on PFAS Kd

Coefficient of analyte-specific linear regression to assess the effects of pH, mono-

valent cation (ammonium), and di-valent cation (calcium) on PFAS sorption.
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The second phase of the project:
Why we saw differences in biosolids partitioning behavior?

Photo: https://www.wbdg.org/
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Looking deeper at the organic matter characteristics

Reverse-phase analysis in HPLC

Figure credits reserved for Waters Inc. 

Vanillin

Naphthalene

bŀǇƘǘƘŀƭŜƴŜΩǎ ƘȅŘǊƻǇƘƻōƛŎƛǘȅ Ҕ ±ŀƴƛƭƭƛƴΩǎ ƘȅŘǊƻǇƘƻōƛŎƛǘȅ
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Looking deeper at the organic matter characteristics

Reverse-phase analysis in HPLC

Figure credits reserved for Waters Inc. Photo credit: Oliver Scherf-Clavel

Water: pH 4.0 acetic 
acid/acetate buffer

Methanol Waters 4.6 × 150 mm
Symmetry C18 with 5-µm particles of bonded silica

UV: 254 nm

70%30%
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Looking deeper at the organic matter characteristics

Reverse-phase analysis in HPLC

ÅOrganic matter extracted by sodium hydroxide and formaldehyde 

ÅHydrophobicity level order: anaerobically digested sludge> aerobically digested> composted sludge

Higher hydrophobicity
Higher hydrophobicity
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Looking deeper at the organic matter characteristics

Elemental analysis of biosolids: Aromaticity 

Å Hexane has 6 carbon and 14 hydrogen, with a C/H ratio 
of 0.43

Å Benzene has 6 carbon and 6 hydrogen with a C/H ratio of 
1.

Å Higher C/H implies higher level of aromaticity in organic 
molecules. 

Å Bituminous coalshave aC/H ratiobetween 14 and 17 
(highly aromatic)

Hexane (C6H14): C/H = 0.43 Benzene (C6H6): C/H = 1   

Bituminous coals

Biosolid

Sludge

C/H level

14-17

1-8
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Looking deeper at the organic matter characteristics

Elemental analysis of biosolids: Aromaticity 
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Å Higher level of C/H implies higher aromaticity level
Å Higher aromaticity may result in higher polar molecules
Å This is consistent with reverse phase analysis as the composting
samples had the fastest elution times (lowest hydrophobicity)  

y = -0.3827x + 2.8731
R² = 0.5484
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Hydrophobicity correlation with aromaticity in 
five biosolids

Composting with highest C/H ratio
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Wei et al., 2017; Aalto University

ÅCharacterize the organic matter content of 5 biosolids based on 
their size

SEC standards (PSS: 33400, 16000, 7540, 5180 mw)

Standards eluting based on size

Looking deeper at the organic matter characteristics
Size Exclusion Chromatography (SEC) 

Molecule sizes 
decrease 




