

Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes

Temple University

• Dr. Rominder Suri, Dr. Erica R. McKenzie

Drexel University

• Asa Lewis and Dr. Christopher Sales

Financial support

- Water Research Foundation (award #5002)
- National Science Foundation (award #CBET-1805588)
- Army Research Office DURIP (award #W911NF1910131)

Farshad Ebrahimi Ph.D. Candidate in Environmental Engineering Civil & Environmental Engineering Department

> Temple University April 2021

Water Research

Introduction

Poly- and perfluoroalkyl substances (PFAS)

- Synthetic compounds
- Used in various consumer goods for over 50 years
- Highly fluorinated alkyl chain
 - Persistent
 - Will not easily degrade
 - Bioaccumulative
 - Partition into biotic tissue
 - Toxic
 - Negatively affect biological health
 - Potential link to cancer

- Ubiquitous
 - Detected both in human & animals
 - Wastewater, surface water, and oceans
 - Globally transported

Introduction

- > 4000 compounds
- Usually present in charged form (primarily anions)
- Surfactant behavior
- Ability to partitioning into solids such as soil, sediment, sludge, and biosolids

Commo	on Items wit	th PFAS
	AĪė t	P
FOOD PACKAGING microwave popcorn bags, sandwich wrappers, takeout containers, fast food wrappers	HOUSEHOLD ITEMS makeup, floss, waxes, paints, stains	STAIN-RESISTANT carpets, rugs, and fumiture
NONSTICK	OUTDOOR GEAR with a "durable water ropellopt" coasting	
SOURCES: <u>T</u>	OXIC-FREE FUTU	IRE; EPA

Human Exposure and sources of PFAS Image: DWP, adapted from Oliaei et al. 2013.

Introduction

- > 7 million tons of biosolids are either directly applied to agricultural land (~60%) or disposed (~40%) (Northeast Biosolid and Residual Association, 2004)
- > 3,000 kg PFAS/yr released (Venkatesan and Halden, 2013)
- PFOA and PFOS concentrations: up to 68 ng/g and 219 ng/g in activated sludge (Venkatesan and Halden, 2013)

PFOS mass flowrate (mg/day within WWTP)

Environ. Sci. Technol. 2006, 40, 7350-7357

Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility[†]

MELISSA M. SCHULTZ,[‡] CHRISTOPHER P. HIGGINS,[§] CARIN A. HUSET,[‡] RICHARD G. LUTHY,[§] DOUGLAS F. BAROFSKY,[‡] AND JENNIFER A. FIELD^{*,‡,}[#]

The first phase of the project:

Looking at a variety of potentially effective parameters

Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes

Farshad Ebrahimi^a, Asa J. Lewis^b, Christopher M. Sales^b, Rominder Suri^a, Erica R. McKenzie^{a,*}

^a Department of Civil and Environmental Engineering, Temple University, 1947 N 12th St, Philadelphia, PA, 19122, USA
^b Department of Civil, Architectural & Environmental Engineering, Drexel University, 3100 Market St, Philadelphia, PA, 19104, USA

² Department of Civil and Environmental Engineering, Emple University, 1947 N 12th St. Philadelphia, IA, 20122, USA ³ Department of Civil Architectural & Eminemental Engineering, Decord University, 3100 Marker St. Philadelphia, IA, 19104, USA

Farshad Ebrahimi ", Asa J. Lewis ", Christopher M. Sales ", Rominder Sur "

- pH
- Mono-valent cation
- Di-valent Cation

Anaerobic Digester Photos: https://www.sludgeprocessing.com/

Experimental Design and methods

- 14 PFAS evaluated –head group, chain length, and fluorinated regions
- Solution chemistry pH, ionic strength, calcium concentration
- Treatment process secondary treatment (4) and stabilization (3)

Sludge sample	Biosolid sample	Size
Activated sludge_A	NA	Small
Activated sludge_B	NA	Medium
Activated sludge_C	Class B anaerobic digestion_C	Small
Trickling filter_D	Class A composting_D	Small
Trickling filter_E	NA	Medium
BNR_F	Class A composting_F	Small
BNR_G	Aerobic Digestion_G	Large
BNR_H	Class A composting_H	Small
BNR_I	Aerobic Digestion_I	Medium
Rotating biological contactors_J	NA	Small

- Small: < 10 MGD
- Medium: 10 20 MGD
- Large: > 20 MGD

Experimental design

Isotherm- Equilibrium study

- Intensive 7 concentrations
- Limited 1 concentration

Edge- Testing solution parameters

- pH: 6, 7, and 8
- Ionic strength: 1, 10, 100 mM NaNO₃
- Ca²⁺: 0.33, 3.3, 33 mM Ca(NO₃)₂

RESEARCH GROUI

Sample processing

PFAS partitioning behavior in sludge/biosolid

RESEARCH GROUP

a. Examples of isotherm model fittings (linear and Freundlich) in RBC J sludge sample; **b.** Distribution of best-fit isotherm models across sludge and biosolid samples

Partitioning behavior in secondary sludge

- No significant effects on PFAS K_d
- Effects may be canceled out by:
 - Variable influent source
 - Sludge compositions

PFBA, PFOA, PFHxS, and PFOS partitioning coefficients across different secondary

treatments (10 sludge samples with isotherm experiments conducted in reference

solution)

Partitioning behavior in biosolid

 \succ K_d order: anaerobic digestion > aerobic digestion > composting

PFAS partitioning coefficients across different sludge stabilization methods

Sludge stabilization effects on partitioning behavior

 Stabilization decreases the PFAS sorption capacity significantly

 K_d comparison among paired-biosolid sludge samples in plant D. Partitioning experiments conducted in reference solution (200 ng spiking of suite of PFAS).

Solution and solid-specific effects on PFAS K_d

- Elevated mono- and divalent cations increased PFAS K_d
- ➢ High pH decreased PFAS K_d
- Protein was stronger predictor of PFAS K_d than organic matter or lipid fraction.

Coefficient of analyte-specific linear regression to assess the effects of pH, mono-

valent cation (ammonium), and di-valent cation (calcium) on PFAS sorption.

The second phase of the project:

Why we saw differences in biosolids partitioning behavior?

Photo: https://www.wbdg.org/ 16

400

Looking deeper at the organic matter characteristics

Reverse-phase analysis in HPLC

Naphthalene

Naphthalene's hydrophobicity > Vanillin's hydrophobicity

Figure credits reserved for Waters Inc.

Looking deeper at the organic matter characteristics **Reverse-phase analysis in HPLC**

RESEARCH GROUP

Looking deeper at the organic matter characteristics Reverse-phase analysis in HPLC

- Organic matter extracted by sodium hydroxide and formaldehyde
- Hydrophobicity level order: anaerobically digested sludge> aerobically digested> composted sludge

C/H level

Looking deeper at the organic matter characteristics Elemental analysis of biosolids: Aromaticity

- Hexane has 6 carbon and 14 hydrogen, with a C/H ratio of 0.43
- Benzene has 6 carbon and 6 hydrogen with a C/H ratio of 1.
- Higher C/H implies higher level of aromaticity in organic molecules.
- **Bituminous coals** have a **C/H ratio** between 14 and 17 (highly aromatic)

Benzene (C_6H_6): C/H = 1

14-17

Looking deeper at the organic matter characteristics Elemental analysis of biosolids: Aromaticity

- Higher level of C/H implies higher aromaticity level
- Higher aromaticity may result in higher polar molecules
- This is consistent with reverse phase analysis as the composting samples had the fastest elution times (lowest hydrophobicity)

Composting with highest C/H ratio

Looking deeper at the organic matter characteristics

Size Exclusion Chromatography (SEC)

 Characterize the organic matter content of 5 biosolids based on their size

> EAD1 C. Sig=214.4 Ref=350.100 2004 3 -96 17. 10 14 12 13 15 Time [min] DAD1 C. Sig=214,4 Ref=380,100 Molecule sizes Z 1008-12 13 Titthe Tittin DAD1 C. Sig=214,4 Ref=350,100 decrease 1000-The second 500 18 19 20 12 13 :14 Time (min) DAD1 C. Sig=214,4 Ref=350,100 12. 13. 14 Time [min]

Standards eluting based on size

Wei et al., 2017; Aalto University

SEC standards (PSS: 33400, 16000, 7540, 5180 mw)

Looking deeper at the organic matter characteristics Size Exclusion Chromatography (SEC)

- Characterize the organic matter content of 5 biosolids based on ۲ their size
- Hypothesis: Organic matter with higher molecular weight/size will show higher polarity
- Molecule size order: aerobic and anaerobic > composting

SEC calibration plot

Note the negative slope

4.5

Conclusions

- PFAS-specific properties, solution chemistry, solid characteristics and stabilization methods can change the leaching potential of the sewage solids
- Sludge stabilization showed significant difference in PFAS partitioning behavior
- Higher hydrophobicity and bigger size of organic matter have resulted in higher partitioning coefficients, while higher aromatic fraction have resulted in lower partitioning coefficients in biosolid samples
- Source-derived PFAS loads, and influent composition are significant parameters in addition to the current factors

Implications

- Monitoring solution chemistry parameters proactively and maintaining a lower pH (<7) in wastewater would result in less PFAS leaching across sewage solids.
- Add di-valent cations may reduce PFAS leaching across sewage solids.
- Pretreatment efforts are of high importance, as secondary treatment and sludge stabilization are not able to remove PFAS.
- Sludge stabilization can potentially be optimized to reduce PFAS leaching.
- More research is needed to assess the effect of SRT, storage time, temperature, humidity, and solar radiation on the leaching potential of PFAS from biosolids.

