Drilling
NotNEWMOA Workshop
Characterizing Chlorinated Solvent (DNAPL) SitesAble (to find)

Precise Location of Solvents

Presented By

Dr. Todd Halihan (Oklahoma State University & Aestus, LLC) Stuart W. McDonald, P.E. (Aestus, LLC)

September 11, 2007 - Westford Regency, Westford, MA September 12, 2007 - Publick House, Sturbridge, MA

Today's Discussion Points Regarding DNAPL Site Characterization

- Conventional site characterization methods are <u>not</u> providing complete & cost effective site characterization; a new tool is available to help (i.e., high resolution ERI)
- Review reasons why wells/borings alone are not sufficient to characterize DNAPL sites
- Discuss new paradigm of NAPL source behavior in subsurface developed by use of high resolution ERI (GeoTrax SurveyTM)
- Review Case Studies EPA, States, consultants, have demonstrated that high resolution ERI (GeoTrax SurveyTM) works to locate NAPLs in subsurface
- Better site characterization → Better Project Results

Most common characterization approach is to scan first

- Medical • X-ray • MRI
- Sonogram
 Petroleum
- Seismic
- GravityMagnetics

Sampling array at the Cape Cod Site; over 10,000 subsurface sampling ports. –USGS- Environmental
Drill
Probe
Excavate

Typical Site Characterization Problems

- Costly Investigations
 - Few useful data points (low data density)
 - Too much "interpretation" between data points
- No continuous "picture" of the subsurface
- Site impacts with no known source
- Over/under design and inefficient O&M
- Is the site really clean following remedial action?

Why don't we "scan" first?

- 1. Cost
- 2. Social limitations (3rd Party scanning?)
- 3. Previously difficult to effectively scan
 - Lots of "noise"
 - Pipes
 - Disturbed ground
 - Most contaminants geophysically "invisible"
 - Non-magnetic
 - Low density contrast
 - Non-conductive to highly non-conductive

Characterize my DNAPL problem...

- 1. I put an organic cocktail into the ground with many possible constituents
- 2. I don't know when or exactly where
- 3. My subsurface property distribution is unknown
- 4. Biodegradation is occurring at some rate
- 5. I may have added a few things....

What is Electrical Resistivity Imaging (ERI)?

Based on

- DC resistivity techniques (>100 yrs old)
- computing/electronics power (<10 yrs old)
- Instead of 10's of data, collect thousands (high data density)
- Geological digital photography
- Provides high resolution map of electrical properties of the subsurface

How ERI Works – "Setting Up The Camera"

56 Electrode Stakes (3/8-inch diameter) Hammered Into Ground
 Geophysical Cables Attached to Electrode Stakes
 Data Collection Starts (~1-2 Hours; Site Dependent)

Take Only Pictures...Leave Only "Footprints"!

How ERI Works – "Taking the Picture"

Four Electrodes Yield One Measurement Data Point ("pixel")

How ERI Works – "Developing the Film"

Iterative Measurements Yield Matrix of Data Points or "Pixels"

Proprietary Software Generates Subsurface 2-D Image from Data Set

A Kilopixel Digital Camera Taking Electrical Picture of Subsurface

How ERI Works – Viewing the "Pictures"

ERI Output – 2-D Data "Fences" in 3-D Space

How ERI Works – Viewing the "Pictures"

3-D ERI Model Output – Enid, OK

What would you like the Enid Site conceptual model to be?

(all cores within 60 feet of each other)

Why didn't we do this before?

Technological Progression

- Data acquisition now 100x faster than 1990
- Data processing now <u>350x</u> faster than 1990
- Images were not "drillable"
 - OSU/Aestus created dramatically improved images
 - Images can "see" resistive subsurface targets others can't

Technological Comparison

- X Standard ERI methods barely able to detect "blob" with the highest concentration of LNAPL detected on this site
- X Second LNAPL "blob" does not show up using standard ERI
- OSU's/Aestus' ERI Methods detect both LNAPL "blobs" present
- Image shows concentrations in a semi-quantitative manner
- ✓ Images are "Drillable"

* Confirmation Drilling Data Collected by EPA; nages from Golden, OK Site Case Study

Why has it been so hard to understand your site?

- Wells do not provide a good estimate of subsurface conditions at DNAPL sites
- No site imaged with this ERI technique has shown a uniform layer with a "thickness" of DNAPL – occurs as discontinuous "blobs"
- Well data should be viewed differently depending on well function, well construction, and whether pre- or post-remediation

DNAPLs at Landfill Waste Pit

At the time the image was taken, wells were "clean"

DNAPLs at Landfill Waste Pit - Zoomed

Dept. of Health/Human Services Building - Hobart, OK

4 0	00	12	16	20	24	28	32	36	40	44	48	52	56	60	64	80	96	112

(Aestus, August 2004)

Dept. of Health/Human Services Building - Hobart, OK

Monitoring Well	Date	Depth to Product (ft)	Product Thickness (ft)		
	9/1/04	NP	0		
MW-2	11/11/04	NP	0		
	10/11/05	NP	0		
	9/1/04	NP	0		
MW-3	11/11/04	NP	0		
	10/11/05	NP	0		
	9/1/04	NP	0		
MW-4	11/11/04	NP	0		
	10/11/05	NP	0		

Well Data - all were non-detect, No apparent problem

Core Data - detects high total petroleum hydrocarbon concentrations

(Secor, August 2004)

Some references that demonstrate problems with monitoring LNAPL using only wells

Adamski, M., Kremesec, V., Kolhatkar, R., Pearson, C., and Rowan, B. 2005. LNAPL in fine-grained soils: conceptualization of saturation, distribution, recovery, and their modeling. Ground Water Monitoring & Remediation. 25:100-112.

Aral, M.M., and Liao, B. 2000. LNAPL thickness interpretation based on bail-down tests. Ground Water. 38:696-701.

Aral, M.M., and Liao, B. 2002. Effect of groundwater table fluctuations on LNAPL thickness in monitoring wells. Environmental Geology. 42:151-161.

Baehr, A.L. and Corapcioglu, M.Y. 1987. A compositional multiphase model for groundwater contamination by petroleum products; 2. Numerical Solution. Water Resources Research. 23: 201-213.

Ballestero, T.P., Fiedler, F.R., and Kinner, N.E. 1994. An investigation of the relationship between actual and apparent gasoline thickness in a uniform sand aquifer. Ground Water. 32:708-718.

Beckett, G.D. and Huntley, D. 1998. Soil properties and design factors influencing free-phase hydrocarbon cleanup. Environmental Science and Technology. 32:287-293.

Bentsen, R.G. 2003. The role of capillarity in two-phase flow through porous media. Transport in porous media. 51:103-112.

Charbeneau, R.J. 2000. Groundwater Hydraulics and Pollutant Transport. Prentice Hall, New Jersey.

Charbeneau, R.J., Johns, R.T., Lake, L.W., and McAdams III, M.J. 2000. Free-product recovery of petroleum hydrocarbon liquids. Ground Water Monitoring & Remediation. 20:147-158. Corapcioglu, M.Y. and Baehr, A.L. 1987. A compositional multiphase model for groundwater contamination by petroleum products; 1. Theoretical considerations. Water Resources Research. 23:191-200.

Farr, A.M., Houghtalen, R.J., and McWhorter, D.B. 1990. Volume estimation of light nonaqueous phase liquids in porous media. Ground Water. 28:48-56.

Huntley, D., Wallace, J.W., and Hawk, R.N. 1994. Nonaqueous phase hydrocarbon in a fine-grained sandstone: 2. Effect of local sediment variability on the estimation of hydrocarbon volumes. Ground Water. 32:778-783.

Kemblowski, M.W. and Chiang, C.Y. 1990. Hydrocarbon thickness fluctuations in monitoring wells. Ground Water. 28:244-252.

Lenhard, R.J. 1990. Estimation of free hydrocarbon volume from fluid levels in monitoring wells; and, volume estimation of light nonaqueous phase liquids in porous media; discussion. Ground Water. 28:800-801.

Lenhard, R.J., and Parker, J.C. 1990. Estimation of free hydrocarbon volume from fluid levels in monitoring wells. Ground Water. 28:57-67.

Liao, B., and Aral, M.M. 1999. Interpretation of LNAPL thickness measurements under unsteady conditions. Journal of Hydrologic Engineering. p.125-134.

Liao, B., and Aral, M.M. 2000. Semi-analytical solution of two-dimensional sharp interface LNAPL transport models. Journal of Contaminant Hydrology. 44:203-221.

Lundegard, P.D. and Mudford, B.S. 1998. LNAPL volume calculation: parameter estimation by nonlinear regression of saturation profiles. Ground Water Monitoring. 18:88-93.

Schiegg, H.O. 1984. Considerations on water, oil, and air in porous media. Water Science and Technology. 17:467-476.

Sleep, B.E. 1995. A method of characteristics model for equation of state compositional simulation of organic compounds in groundwater. Journal of Contaminant Hydrology. 17:189-212. Sleep, B.E., Sehayek, L., and Chien, C.C. 2000. A modeling and experimental study of light nonaqueous phase liquid (LNAPL) accumulation in wells and LNAPL recovery from wells. Water Resources Research. 36:3535-3545.

Sleep, B.E. and Sykes, J.F. 1993. Compositional simulation of groundwater contamination by organic compounds, 1. Model development and verification. Water Resources Research. 29:1697-1708.

Van Geel, P.J. and Sykes, J.F. 1994. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand, 1. Laboratory experiment and image analysis techniques. Journal of Contaminant Hydrology. 17:1-25.

Van Geel, P.J. and Sykes, J.F. 1994. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand, 2. Comparison of laboratory and model results. Journal of Contaminant Hydrology. 17:27-53.

Van Geel, P.J. and Sykes, J.F. 1997. The importance of fluid entrapment, saturation hysteresis and residual saturations on the distribution of a lighter-than-water non-aqueous phase liquid in a variably saturated sand medium. Journal of Contaminant Hydrology. 25:249-270.

Vogler, M., Arslan, P., and Katzenbach, R. 2001. The influence of capillarity on multiphase flow within porous media: a new model for interpreting fluid levels in groundwater monitoring wells in dynamic aquifers. Engineering Geology. 60:149-158.

Wallace, J.W. and Huntley, D. 1992. Effect of local sediment variability on the estimation of hydrocarbon volumes. Ground Water Management. 11:273-285.

Now, in general...

- Wells provide a limited picture of the subsurface
- ERI provides a great tool to allow sites to be better characterized; ERI is not a magic bullet as confirmation data is required to calibrate images
- Because DNAPL distribution is discontinuous, the total volume estimated using ERI is typically much less than estimates using only well data
- Visual tools provide increased ability to understand sites and communicate to project stakeholders

Why do you need confirmation borings?

- Every site is different- there are infinitesimal combinations of lithology, pore fluids, pore structure, contamination, and previous remediation attempts.
- We don't have a "magic" resistivity scale that categorizes every site.
- Images MUST be calibrated in order to provide the best interpretation.

Case Studies

Locating DNAPLs in Hard Rock Geology Using GeoTrax SurveyTM Subsurface Imaging

Dry Cleaners Site – PCE and TCE

<u>Case Study</u> - Dry Cleaner Site with TCE & PCE in Sands/Clays Overlying Bedrock

<u>Case Study</u> - Dry Cleaner Site with TCE & PCE in Sands/Clays Overlying Bedrock - <u>Zoomed</u>

The Road We Want

The Road We Want

Current Direction

The Road We Want

Possible Direction

nmon Earth	Targeted
Model	Cleanup

Solid

Confirmation

High Res. ERI	Direct heating	High Res. ERI			
w/	Surfactant Flush	w/			
confirmation	Dig and Haul	confirmation			
drilling	Others	drilling			

Moral of This Story:

Stop Drilling Blind!

THANK YOU! Questions?

Dr. Todd Halihan Oklahoma State University School of Geology 105 Noble Research Center Stillwater, OK 74078 todd.halihan@okstate.edu Reed T. Terry Aestus, LLC 4177 Route 2 (518) 326-1279 Troy, NY 12180 rtt@aestusllc.com

Stuart W. McDonald, P.E. Aestus, LLC 2605 Dotsero Court Loveland, CO 80538 (970) 278-4090 swm@aestusllc.com