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� Conventional site characterization methods are not providing 
complete & cost effective site characterization; a new tool is 
available to help (i.e., high resolution ERI) 

� Review reasons why wells/borings alone are not sufficient to 
characterize DNAPL sites

� Discuss new paradigm of NAPL source behavior in 
subsurface developed by use of high resolution ERI    
(GeoTrax SurveyTM)

� Review Case Studies - EPA, States, consultants, have 
demonstrated that high resolution ERI (GeoTrax SurveyTM)
works to locate NAPLs in subsurface

� Better site characterization → Better Project Results

Today’s Discussion Points Regarding
DNAPL Site Characterization





Most common characterization 
approach is to scan first

� Medical
� X-ray
� MRI
� Sonogram

� Petroleum
� Seismic
� Gravity
� Magnetics

� Environmental
� Drill
� Probe
� Excavate

Sampling array at the Cape Cod Site; 
over 10,000 subsurface sampling ports. –USGS-

� Medical
� X-ray
� MRI
� Sonogram

� Petroleum
� Seismic
� Gravity
� Magnetics

� Environmental
� Drill
� Probe
� Excavate



� Costly Investigations 

� Few useful data points (low data density)

� Too much “interpretation” between data 
points

� No continuous “picture” of the subsurface

� Site impacts with no known source

� Over/under design and inefficient O&M

� Is the site really clean following remedial 
action?

Typical Site Characterization Problems



Why don’t we “scan” first?

1. Cost
2. Social limitations (3rd Party scanning?)

3. Previously difficult to effectively scan
� Lots of “noise”

▪ Pipes

▪ Disturbed ground

� Most contaminants geophysically “invisible”

▪ Non-magnetic

▪ Low density contrast

▪ Non-conductive to highly non-conductive



Characterize my DNAPL problem…

1. I put an organic cocktail into the ground 
with many possible constituents

2. I don’t know when or exactly where
3. My subsurface property distribution is 

unknown
4. Biodegradation is occurring at some rate
5. I may have added a few things….



� Based on 

� DC resistivity techniques (>100 yrs old)

� computing/electronics power (<10 yrs old)

� Instead of 10’s of data, collect thousands   
(high data density)

� Geological digital photography

� Provides high resolution map of electrical 
properties of the subsurface

What is Electrical Resistivity Imaging (ERI)?



56 Electrode Stakes (3/8-inch diameter) Hammered In to Ground
Geophysical Cables Attached to Electrode Stakes
Data Collection Starts (~1-2 Hours; Site Dependent)

How ERI Works – “Setting Up The Camera”

Take Only Pictures…Leave Only “Footprints”!



One Data Point or “Pixel”

Four Electrodes Yield One Measurement Data Point (“ pixel”)

How ERI Works – “Taking the Picture”



Iterative Measurements Yield Matrix of Data Points o r “Pixels”
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Proprietary Software Generates Subsurface 2-D Image  from Data Set

A Kilopixel Digital Camera Taking Electrical Picture  of Subsurface

How ERI Works – “Developing the Film”



How ERI Works – Viewing the “Pictures”
3-D Perspective View - GeoTrax Surveys TM 

(From Above and Looking North at All On-Site Surveys)
LEGEND:

Current UST Tank Basin

Former UST Basins

ERI Output – 2-D Data “Fences” in 3-D Space



How ERI Works – Viewing the “Pictures”

3-D ERI Model Output – Enid, OK



What would you like the Enid  
Site conceptual model to be?

(all cores within 60 feet of each other)

Clean NAPL in
Sand

NAPL in
Clay

NAPL in
Both



Why didn’t we do this before?

Technological Progression

• Data acquisition now 100x faster than 1990

• Data processing now 350x faster than 1990

• Images were not “drillable”

– OSU/Aestus created dramatically improved images
– Images can “see” resistive subsurface targets others   

can’t
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High Resolution Subsurface Image

That is “Drillable”
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Technological Comparison

Images from Golden, OK Site Case Study

X Standard ERI methods barely 
able to detect “blob” with the 
highest concentration of LNAPL 
detected on this site

X Second LNAPL “blob” does not 
show up using standard ERI

� OSU’s/Aestus’ ERI Methods 
detect both LNAPL “blobs”
present

� Image shows concentrations in 
a semi-quantitative manner

� Images are “Drillable”

* Confirmation Drilling Data Collected by EPA;



� Wells do not provide a good estimate of 
subsurface conditions at DNAPL sites

� No site imaged with this ERI technique has 
shown a uniform layer with a “thickness” of 
DNAPL – occurs as discontinuous “blobs”

� Well data should be viewed differently 
depending on well function, well construction, 
and whether pre- or post-remediation

Why has it been so hard to understand your site?



DNAPLs at Landfill Waste Pit

GeoTrax Survey TM Results

DNAPL Recovery Wells

Approximate zone of recovery well influence

Potential
DNAPL
Excursion

DNAPLsDNAPLs DNAPLs
Pit Limits

At the time the image was taken, wells were “clean”



DNAPLs at Landfill Waste Pit - Zoomed

Approximate zone of 
recovery well influence
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Dept. of Health/Human Services Building - Hobart, OK

MW-4 MW-3 MW-2

(Aestus,  August 2004)



(Secor, August 2004)

Core Data - detects high total 
petroleum hydrocarbon concentrations

Well Data - all were non-detect, 

No apparent problem
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Some references that demonstrate 
problems with monitoring LNAPL

using only wells
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Now, in general…
� Wells provide a limited picture of the subsurface 

� ERI provides a great tool to allow sites to be  
better characterized; ERI is not a magic bullet 
as confirmation data is required to calibrate 
images

� Because DNAPL distribution is discontinuous, 
the total volume estimated using ERI is typically 
much less than estimates using only well data

� Visual tools provide increased ability to 
understand sites and communicate to project 
stakeholders



Why do you need confirmation borings?

� Every site is different- there are 
infinitesimal combinations of lithology, 
pore fluids, pore structure, contamination, 
and previous remediation attempts.

� We don’t have a “magic” resistivity scale 
that categorizes every site.

� Images MUST be calibrated in order to 
provide the best interpretation. 



Dry Cleaners Site – PCE and TCE

Case Studies
Locating DNAPLs in Hard Rock Geology

Using GeoTrax SurveyTM Subsurface Imaging
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Case Study - Dry Cleaner Site with TCE & PCE
in Sands/Clays Overlying Bedrock
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Case Study - Dry Cleaner Site with TCE & PCE
in Sands/Clays Overlying Bedrock - Zoomed
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Groundwater Sampling Results
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Direct push
Auger
Drilling

Pump and Treat
SVE

Direct push
Auger
Drilling



Direct push
Auger
Drilling

Pump and Treat
SVE

Others

Direct push
Auger
Drilling



High Res. ERI
w/

confirmation 
drilling

Direct heating
Surfactant Flush

Dig and Haul
Others

High Res. ERI
w/

confirmation 
drilling



Stop Drilling Blind!

Moral of This Story:



THANK YOU!THANK YOU!
Questions?Questions?

Dr. Todd Halihan
Oklahoma State University
School of Geology
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Stillwater, OK 74078
todd.halihan@okstate.edu

Stuart W. McDonald, P.E.
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