

Understanding Usability of PFAS Data NEWMOA Webinar Series - May 4, 2021

Nancy C. Rothman, Ph.D., NEH, Inc. & Elizabeth Denly, ASQ CMQ/OE, TRC

Today's Learning Objectives

- Sampling Precautions
- Holding Times, Containers, and Preservation
- Analytical Methods
- Data Review for Usability

Why Do We Need to Evaluate the Lab's Data? **NEH new environmental ** TRC

- Data may be used to make costly decisions
- Data may have potential to impact human health
- Need to confirm quality data available and appropriate to support decisions
- Need to determine potential low or high biases, potential uncertainties, potential false positive or false negative results

Even if the lab follows all method-required procedures, there can still be data quality/usability issues.

Data Validation

- Formal, systematic process
- Follow specific guidelines created by EPA
- Look at effects of lab performance and matrix on results
- Apply qualifiers to data (e.g., J, UJ, R, J-, J+, NJ)
- Limited or full validation

Data Usability Assessment

- Also look at effects of lab performance and matrix on results
- No qualifiers typically applied
- Spends more time looking at the effect of the lab and matrix issues on the achievement of the project objectives
- Can we use the data for decision-making?

How is Usability Determined?

Results meet sensitivity requirements

Quality of results understood (potential limitations of data)

What Questions Do I Need to Answer While Preparing Lab Scope of Work?

Sampling Event Preparation

Consider the overarching objectives of the project and conceptual site model will influence the fundamentals of any sampling and analysis program

- Site History (e.g., potential sources, quantities used)
- Project Action Levels

Develop a project-specific
Sampling and Analysis
Plan (SAP) which
addresses the increased
risk of contamination and
project-specific
considerations

Why Am I Collecting This Sample?

- Is it a permit requirement?
- Is it for waste characterization?
- Will a human health or ecological risk assessment be performed?
- Are you evaluating nature & extent of contamination?
- Source Identification?
- Are you measuring effectiveness of remediation system?

Field Quality Control: What are the Options? NEH new environmental the Province of the Included Province of the Included

QC Sample	Why Should I Collect?	How Often Should I Collect?	
Field Blank	To evaluate presence of contaminants in ambient air at the site	1 per day per parameter	
Equipment Blank	To evaluate presence of contaminants on equipment after decontamination	1 per day per matrix and parameter	
Field Duplicate*	To evaluate sampling and analytical precision	1 per 20 samples per matrix and parameter	
MS/MSDs**	To evaluate matrix-specific bias	1 per 20 samples per matrix and parameter	
Cooler Temperature Blank	To ensure proper preservation of samples maintained during shipment	1 per each cooler	

^{*}Collect from location with moderate to heavy contamination

^{**}Collect from location with lower level of contamination

Evaluation Categories

- Laboratory Performance
- Field Performance

Laboratory Performance	Field Performance	Matrix Interferences	
Method Blanks	Equipment Blanks	Extracted Internal Standards	
Lab Control Samples	Sample Preservation	Injection Internal Standards*	
Holding Times	Field Duplicates	Matrix Spikes	
Calibrations*		Laboratory Duplicates	
Tunes*			

*Not typically included in Level 2 deliverables

What is Affected by Each Parameter?

Sample-Specific	Batch-Specific		
Holding Time	Method Blanks		
Sample Preservation	Lab Control Samples		
Field Duplicates	Calibrations*		
Extracted Internal Standards	Tunes*		
Injection Internal Standards*	Equipment Blanks		
Matrix Spikes			
Laboratory Duplicates			
*Not typically included in Level 2 deliverables			

PFAS

Why is a PFAS Sampling Event Different From Other Sampling Events?

- Unusually low screening/regulatory criteria for PFAS
- Increased cross-contamination potential
- Sampling equipment and materials typically used for sampling contain or may contain PFAS

How Do We Sample PFAS?

- Similar to conventional sampling (e.g., low-flow techniques, direct push, etc.)
- Special care required to prevent cross contamination
- Use of and exclusion of specific sampling equipment and materials

GENERAL PFAS SAMPLING GUIDANCE

This document contains an introduction to PFAS, biosecurity recommendations, and general recommendations to decrease the possibility of cross-contamination.

Michigan Department of Environmental Quality

Technical Guidance Documents

General PFAS Sampling Guidance Revised October 16, 2018

Wastewater PFAS Sampling Revised October 11, 2018

PFAS Sampling Quick Reference Field Guide

Revised October 17, 2018

Revised November 28, 2018

Residential Well PFAS Sampling

Revised October 11, 2018

Revised November 28, 2018

Groundwater PFAS Samplin

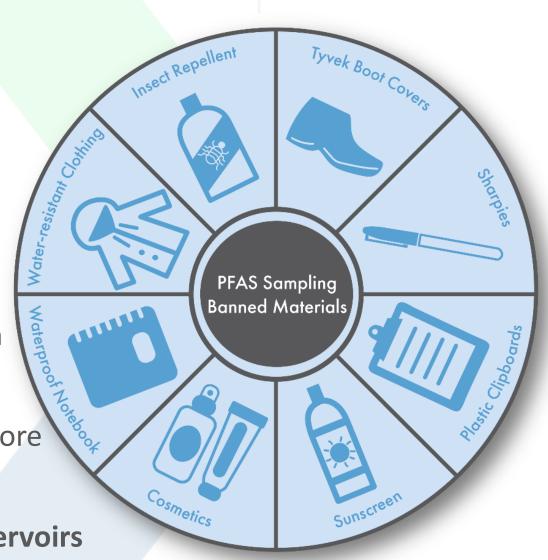
Uploaded October 2018

Uploaded January 2019

PFAS Sampling Dos and Don'ts

	norizons, inc
WHAT SHOULD I AVOID?	USE INSTEAD
Passive diffusion bags (PDBs)	
LDPE Hydrasleeves	✓ HDPE Hydrasleeves
Post-It notes during sample handling	
Blue Ice® (chemical ice packs)	✓ Regular ice in Ziploc® bags
Waterproof field books, plastic clipboards and spiral bound notebooks	 ✓ Field notes recorded on loose paper ✓ Field forms maintained in aluminum or Masonite clipboards
Unnecessary handling of items with nitrile gloves	✓ Personnel collecting and handling samples should wear nitrile gloves at all times while collecting and handling samples or sampling equipment 15

PFAS Sampling Dos and Don'ts



WHAT SHOULD I AVOID?	USE INSTEAD
Equipment with Teflon® (e.g., bailers, tubing, parts in pump) during sample handling or mobilization/demobilization	✓ High density polyethylene (HDPE) or silicone tubing/materials in lieu of Teflon®
Low-density polyethylene (LDPE) or glass sample containers or containers with Teflon-lined lids	 ✓ HDPE or polypropylene containers for sample storage ✓ HDPE or polypropylene caps
Tyvek® suits and waterproof boots	 ✓ Clothing made of cotton preferred ✓ Boots made with polyurethane and polyvinyl chloride (PVC)
Waterproof labels for sample bottles	✓ Paper labels with clear tape
Sunscreens, insect repellants	✓ Products that are 100% natural, DEET
Sharpies	✓ Ballpoint pens
Aluminum foil	✓ Thin HDPE sheeting

Other Special Considerations

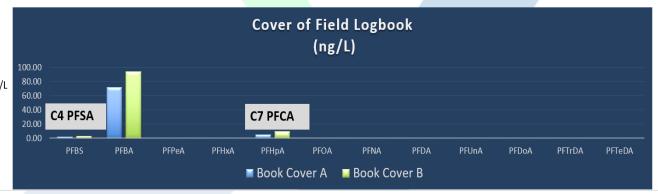
NEH new environmental horizons, inc

- Field QC
- Decontamination of sampling equipment
- No pre-wrapped food or snacks
- Avoid cosmetics, moisturizers, hand creams on day of sampling.
- Visitors to site must remain at least 30 feet from sampling area.
- Wash hands with water after leaving vehicle before setting up on a well.
- Partitioning of PFAS to surface in wells and reservoirs

What Should I Wear?

- No clothing with fabric softeners
- No new clothing
- Avoid boots and other field clothing containing waterproof/resistant material
- Cotton is best

Equipment Study: PFCAs vs PFSAs vs Polyfluoroalkyl Substances



PFCAs	PFSAs	Polyfluoroalkyl Substances	
PTFE Tubing	Bailer Line	PTFE-lined Tubing	ng,
PTFE-lined Tubing	Sample Labels	Bailer Line	
LDPE Tubing	Nitrile Gloves		
Bailer Line	Field Book Cover		ng/l
Sample Labels			
Pizza Box			
Water Level Tapes			
Silastic Tubing			ng,
Nitrile Gloves			
Field Book Pages			
Field Book Cover			
PTFE Bladder			

Other Potential Sampling Concerns Which May Affect Data Interpretation

· How should the sampler deal with surface soil during the installation of

soil borings or monitoring wells?

- What method should be used for the collection of groundwater samples?
- What depth is recommended for surface water samples?
 - Is the surface water body stagnant or flowing?

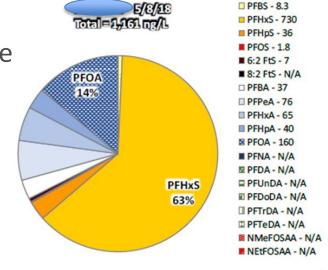
Lake or Pond (Stagnant water body)

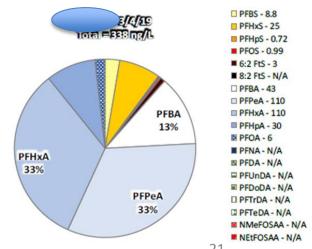
 Collect SW 1-2' below surface

Catch Basin or Shallow Outfall (Flowing water body)

Collect SW 0.5'
 below surface

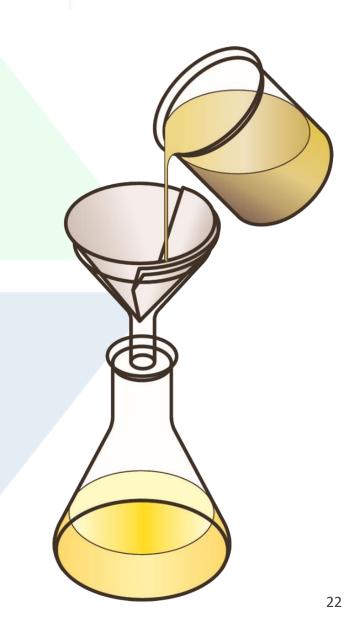
- Is homogenization of soil and sediment samples being performed properly in the field?
- Are there suspended solids in the surface water, groundwater, or wastewater samples?


How Do Labs Deal With Solids in Aqueous Samples?



- The following samples *contain* non-settleable particulate matter which plugged the solid-phase extraction column.
- The following samples were decanted prior to preparation due to excessive sediment in bottle.
- The following sample was decanted prior to preparation due to having floating sediment particles and also some wood material.
- The following sample was centrifuged prior to spiking and the extraction due to the color being a dark yellow with floating material instead, which we cannot decant.
- Samples have fine sediment at the bottom of the bottle and mixed in with the sample water.
- Due to residual amounts of sediment in the sample, the sample container was placed in the oven and dried after extraction, and the weight was then recorded. The container was then extracted per the SOP.

Sample from 1" temporary well turbid


Sample from 2" developed MW clear

Filtering of Water Samples

- PFAS may sorb onto glass fiber filters; therefore do not use these filters.
- Filtered/unfiltered data:
 - Is PFAS sorbed to soil or sediment in the water sample?
 - Is PFAS sorbed onto the glass fiber filter?
- Preferred method of dealing with particulates: low flow sampling or use of a centrifuge in the lab
- Consider Centrifugation and Decanting (spike isotopes prior to this)

Keep in Mind

PFAS Methods

Method	Year	Applicable Matrices	# PFAS Analytes
EPA 537 v 1.1	2009	Drinking Water 14 analytes	
EPA 537.1	2020	Drinking Water 18 analytes	
EPA 533	2019	Drinking Water	25 analytes
ASTM D7979-17	2017	Water, Wastewater	21 analytes
ASTM D7968-17	2017	Soil 21 analytes	
ISO 25101	2009	Aqueous	PFOA/PFOS
DoD QSM 5.1	2017	Solid & Aqueous	24+ analytes
DoD QSM 5.2	2018	Solid & Aqueous 24+ analyte	
DoD QSM 5.3	2019	Solid & Aqueous 24+ analytes	
EPA 537 "Modified"	Current	All	24+ analytes

Current PFAS Reportable by Analytical Laboratories MDEQ IPP Analyte CAS No. **UCMR3** 537.1 NYSDEC ISO 25101 (18) (21) (2) (28)(6) Perfluorobutanoic acid (PFBA) 375-22-4 Χ Χ Perfluoropentanoic acid (PFPeA) 2706-90-3 Χ Perfluorohexanoic acid (PFHxA) 307-24-4 Χ Χ Χ Perfluoroheptanoic acid (PFHpA) 375-85-9 Χ Χ Χ Perfluorooctanoic acid (PFOA) 335-67-1 Χ Χ Χ Χ Χ Perfluorononanoic acid (PFNA) Χ Χ 375-95-1 Х Χ Perfluorodecanoic acid (PFDA) 335-76-2 Χ Χ Χ Perfluoroundecanoic acid (PFUnA) 2058-94-8 Х Х Χ Perfluorododecanoic acid (PFDoA) 307-55-1 Χ Χ Χ Perfluorotridecanoic Acid (PFTrA) 72629-94-8 Χ Χ Perfluorotetradecanoic acid (PFTeA) 376-06-7 Χ Χ Χ 67905-19-5 Perfluorohexadecanoic acid (PFHxDA) Perfluorooctadecanoic acid (PFODA) 16517-11-6 Perfluorobutanesulfonic acid (PFBS) 375-73-5 Χ Χ Χ Χ Perfluoropentanesulfonic acid (PFPeS) 2706-91-4 Χ Perfluorohexanesulfonic acid (PFHxS) 355-46-4 Х Χ Χ Perfluoroheptanesulfonic Acid (PFHpS) 375-92-8 Χ Perfluorooctanesulfonic acid (PFOS) 1763-23-1 Χ Χ Х Χ Perfluorononanesulfonic acid (PFNS) 474511-07-4 Χ Perfluorodecanesulfonic acid (PFDS) 335-77-3 Χ Perfluorooctane Sulfonamide (FOSA) 754-91-6 Χ Χ N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA) 2355-31-9 Χ Х Χ N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA) 2991-50-6 Χ Χ Χ 6:2 Fluorotelomer sulfonic acid (6:2 FTSA) 27619-97-2 Χ 8:2 Fluorotelomer sulfonic acid (8:2 FTSA) 39108-34-4 Х Χ 4:2 Fluorotelomer sulfonic acid (4:2 FTSA) 757124-72-4 10:2 Fluorotelomer sulfonic acid (10:2 FTSA) 120226-60-0 N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE) 24448-09-7 N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) 1691-99-2 N-Methyl perfluorooctane sulfonamide (MeFOSA) 31506-32-8

4151-50-2

62037-80-3

Х

Χ

Χ

N-Ethyl perfluorooctane sulfonamide (EtFOSA)

HFPO-DA (Gen-X)

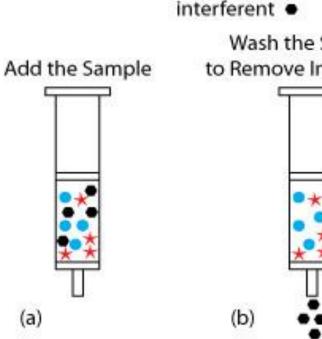
ADONA F-53B-9CI

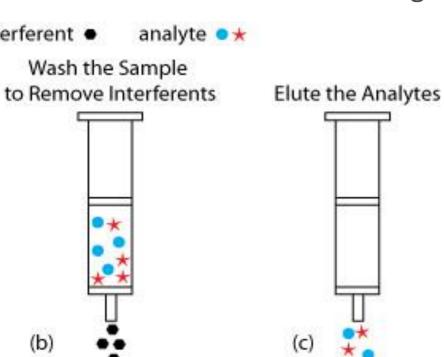
F-53B-11CI

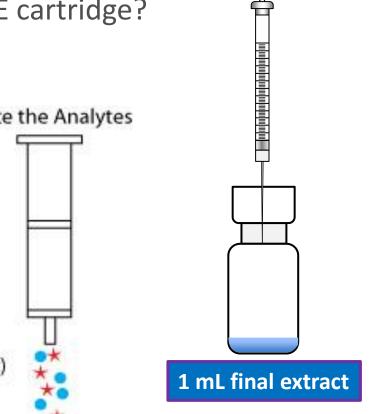
Analyte lists vary by method, laboratory, and regulatory agency; so...

Project-specific
list of PFAS
compounds
needs to be
communicated
to the
laboratory!

Solid Phase Extraction

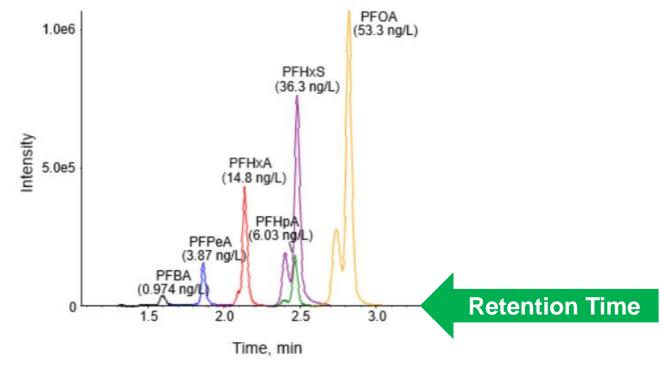

- Is the lab extracting the <u>entire</u> sample and <u>rinsing</u> the sample bottle?
- What cartridge is the lab using?
 - <u>Styrenedivinylbenzene</u> (SDVB) sorbent phase


PFBA, PFPeA poor recoveries


- Reverse phase copolymer characterized by a <u>weak anion exchange</u> (WAX) sorbent phase

Is the lab doing washes to remove interferences on the SPE cartridge?

Sample Analysis: HPLC Separation


NEH new environmental to TRC

(Part 1)

Separates compound mixtures on column. Column has high affinity for PFAS. The affinity of each compound to the column is different based on its solubility.

- Characteristic retention times
- Step 1 in compound identification: time the compound comes off the column

Retention time increases with carbon number

Analyte	Retention Time (min)
PFBA	1.527
¹³ C ₄ PFBA	1.525
PFOS	3.028
¹³ C ₄ PFOS	3.026

Sample Analysis: MS/MS (Part 2)

- Unique fragmentation patterns (Step 2 of compound identification)
- Parent/daughter combinations = definitive ID, more sensitive analysis

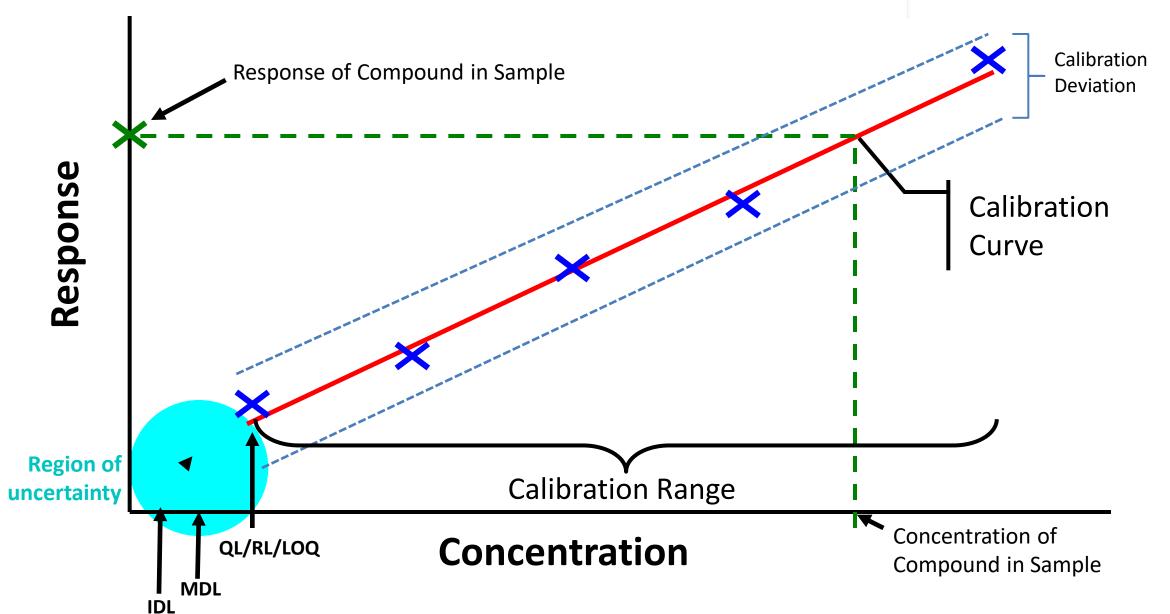
Analyte	Retention Time (min)	Parent/Daughter Ions
PFBS	1.754	299/80 299/99
¹³ C ₃ PFBS	1.752	302/83
PFOS	3.028	499/80 499/99
¹³ C ₄ PFOS	3.026	503/80

Transition Ions (Parent/Daughter Ions)

- Definitive Identification of Compounds
 - Retention time from HPLC separation
 - Transition to characteristic daughter ions
 - lon ratios
- What happens when the ion ratios are outside limits?
 - What are the limits?
- What if there is no confirmation ion?
 - PFBA
 - PFPeA
 - NMeFOSAA
 - NEtFOSAA

Analyte	Retention Time (min)	Parent/ Daughter Ions	Ion Ratio	Ion Ratio Limit
PFBS	1.754	299/80 299/99	2.91	1.35- 4.05
¹³ C ₃ PFBS	1.752	302/83	NA	NA
PFOS	3.028	499/80 499/99	4.19	2.04- 6.12
¹³ C ₄ PFOS	3.026	503/80	NA	NA

Detection Limits


Detection Limit Terminology

Acronym	Definition	
IDL	Instrument Detection Limit	
EDL	Estimated Detection Limit	
DL	Detection Limit	
MDL	Method Detection Limit	
PQL	Practical Quantitation Limit	
RL	Reporting Limit	
QL	Quantitation Limit	
LOD	Limit of Detection	
LOQ	Limit of Quantitation	

Calibration

Different Detection Limits

Detection Limit	Accurate?	Precise?	Use to Demonstrate Below Cleanup Standards?	Use Values in Risk Assessment?
IDL	No	Yes	No	No
EDL ¹	No	Yes	Yes	Yes
MDL / DL	No	Yes	No	Maybe
LOD	No	Yes	Yes ²	Yes ²
RL / QL / LOQ	Yes	Yes	Yes	Yes

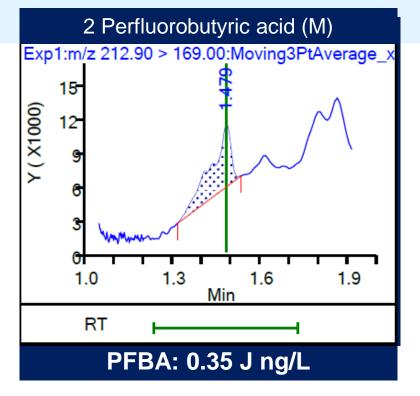
¹Specific to Dioxins/furans and PCB Congeners

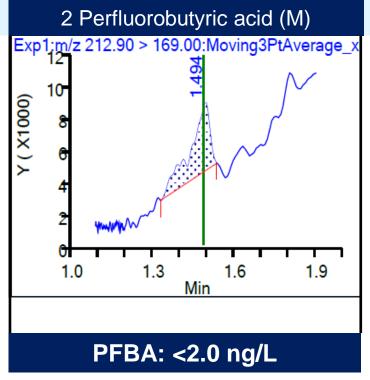
²Specific to DOD projects

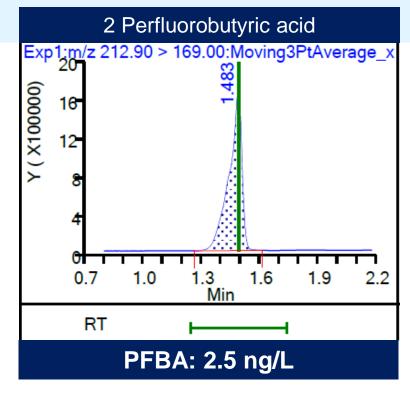
PFAS Analytical Reports

Typical sample result summary form

- Number of PFAS reported
- Results, RLs, units
- Dilution results
- Collection date, prepared date, and
- Percent solids (dry weight)
- Isotope Dilution recoveries


	Client Sample Resul	ts			
Client: xxxx	A a P.	Lab Job ID: xxxxx			
Project/Site: xxxxx Site	6 2 W 24 W 27 W				
Client Sample ID: xxxx-08		Lab Sample ID: xxxxx-19			
Date Collected: 05/18/17 11:20	*	Matrix: Solid			
Date Received: 05/20/17 11:50	Y 20 2	Percent Solids: 15.8			
Method: 537 (modified) - Fluorinated A	Ikvl Substances	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			


	Analyte	58 10	Result Qualifier	RL	Unit	D Prepare	aredAn 7 13:25 05/31	1/17 03:04	Dil
Method: 537 (modified Analyte	d) - Fluorina	1,150	Substan Qualifier	ces	RL	MDL	2000-2000	/17 03:04 /17 03:04 /17 03:04 /17 03:04 /17 03:04	
Perfluorobutanoic acid (PFB/	A)	ND			1.3	0.41	ug/Kg	/17 03:04	
Perfluoropentanoic acid (PFF	PeA)	ND			1.3	0.83	ug/Kg	/17 03:04 /17 03:04	9
Perfluorohexanoic acid (F	PFHxA)	2.6			1.3	0.45	ug/Kg	/17 03:04 1/17 03:04	
Perfluoroheptanoic acid ((PFHpA)	1.9			1.3	0.56	ug/Kg	1/17 03:04 1/17 03:04	8
Perfluorooctanoic acid (PFO)	A)	ND			1.3	0.65	ug/Kg	1/17 03:04	
erfluorononanoic acid (PFN	IA)	ND	1)		1.3	0.53		1/17 03:04	
erfluorodecanoic acid (PFD	(A)	ND	22		1.3			1/17 03:04 1/17 03:04	
Perfluoroundecanoic acid PFUnA)	d	0.79	J		1.3	0.68	ug/Kg	nalyzed 1/17 03:04 1/17 03:04	Di
erfluorododecanoic acid (Pl		ND			1.3	0.77	ug/Kg	1/17 03:04 1/17 03:04	
Perfluorotridecanoic Acid (P	FTriA)	ND			1.3	0.59	ug/Kg	1/17 03:04 1/17 03:04	
Perfluorotetradecanoic acid	(PFTeA)	ND			1.3	0.37	ug/Kg		
Perfluorobutanesulfonic acid	d (PFBS)	ND			1.3	0.66		1/17 03:04	
Perfluorohexanesulfonic (PFHxS)	acid	1.9			1.3	0.75		1/17 03:04	
Perfluoroheptanesulfonio (PFHpS)	c Acid	3.6	X 4		1.3	0.75	ug/Kg	nalyzed 1/17 13:37	Di
Perfluorodecanesulfonic acid	d (PFDS)	ŃD	3		1.3	0.46	ug/Kg	nalyzed	Di
Perfluorooctane Sulfonamide	e (FOSA)	ЙD			1.3	0.51	ug/Kg	1/17 13:37	


What To Use for PFAS?

- RLs most reliable value (aka LOQ or QL) define sensitivity
- Most labs RLs 2-10 ng/L or 1-5 ug/kg, depending on PFAS must meet regulatory requirement
- DO NOT use MDLs as nondetect values
- Be careful of "J" values

Specific Laboratory QA/QC

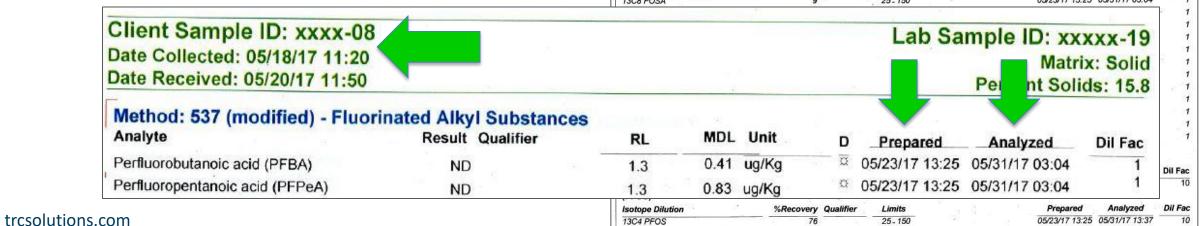
- Sample preservation & handling
- Sample Holding Times / Analytical Batches (≤ 20 samples)
- QC Samples required for each Analytical Batch:
 - Method Blank (MB)
 - Laboratory Control Sample (LCS)
 - Matrix Spike (MS)
 - Matrix Sample Duplicate (MSD)
- Extracted Internal Standard (Labeled Surrogates) added to all samples & QC prior to extraction
- Injection Internal Standards added to all extracts prior to analysis

Assessing Quality

- Overall Quality depends on cumulative Quality from sampling through analysis
- Specifically for PFAS Field Collection & Analytical Method differences can introduce uncertainty
- Guidelines for Evaluating Quality
 - National Functional Guidelines for High Resolution Superfund Methods Data Review, EPA-542-B-16-001 (April 2016)
 - Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs)
 Analyzed by Method 537, EPA 910-R-18-001 (November 2018)
 - Table B-15 of QSM 5.3 Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (DOD/DOE, 2019)
 http://www.denix.osd.mil/edqw/documents/documents/manuals/qsm-version-5-3-final-updated/
 - NYSDEC, Guidelines for Sampling and Analysis of PFAS, Under NYSDEC's Part 375
 Remedial Programs (January 2021)

Evaluate Holding Times

Client Sample Results

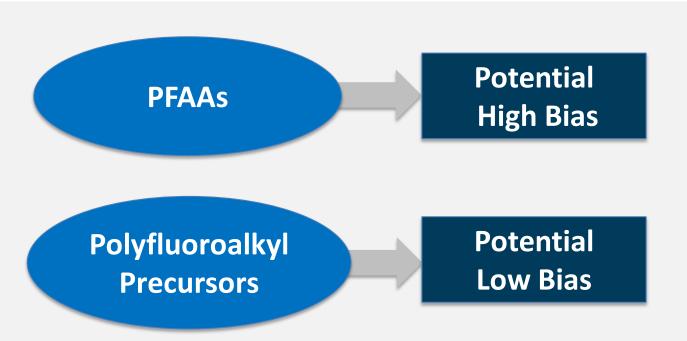


537: 14 days to extraction; 28 days from extraction to analysis 533: 28 days to extraction; 28 days from extraction to analysis

Typical sample result summary form

- Number of PFAS reported
- Results, RLs, units
- Dilution results
- Collection date, prepared date, analysis date
- Percent solids (dry weight)
- Isotope Dilution recoveries

		Cilen	l Saii	ibie	LA	Suii	Lo				
Client: xxxx									Lab Job ID: xx	OXXX	
Project/Site: xxxxx Site							7				
Client Sample ID: xxxx-08					-				Lab Sar	nple ID: xxx	cxx-19
Date Collected: 05/18/17 11:20 Date Received: 05/20/17 11:50									11	전 하루 1일 명하는 느낌이 없으니 오는 그렇다	x: Solid
Method: 537 (modified) - Fluor	inated Alky	l Substa	nces				45750				
Analyte	Result	Qualifier		RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		-	1.3	5000	0.41	ug/Kg	ā	05/23/17 13:25	05/31/17 03:04	1
Perfluoropentanoic acid (PFPeA)	ND			1.3		0.83	ug/Kg		00/20/1/	05/31/17 03:04	- 1
Perfluorohexanoic acid (PFHxA)	2.6			1.3		0.45	ug/Kg		05/23/17 13:25	05/31/17 03:04	1
Perfluoroheptanoic acid (PFHpA)	1.9			1.3		0.56	ug/Kg	O	05/23/17 13:25	05/31/17 03:04	1
Perfluorooctanoic acid (PFOA)	ND			1.3			ug/Kg	O.	05/23/17 13:25	05/31/17 03:04	
Perfluorononanoic acid (PFNA)	ND			1.3			ug/Kg	**	05/23/17 13:25	05/31/17 03:04	- 1
Perfluorodecanoic acid (PFDA)	ND			1.3			ug/Kg	**	05/23/17 13:25	05/31/17 03:04	1
Perfluoroundecanoic acid	0.79	J	8	1.3		0.68	ug/Kg	o	05/23/17 13:25	05/31/17 03:04	
Perfluorododecanoic acid (PFDoA)	ND		12	1.3		0.77	ug/Kg	₽	05/23/17 13:25	05/31/17 03:04	
Perfluorotridecanoic Acid (PFTriA)	ND		. 90	1.3		0.59	ug/Kg	*	05/23/17 13:25	05/31/17 03:04	1
Perfluorotetradecanoic acid (PFTeA)	ND			1.3		0.37	ug/Kg	*	05/23/17 13:25	05/31/17 03:04	1
Perfluorobutanesulfonic acid (PFBS)	ND			1.3		0.66	ug/Kg	×	05/23/17 13:25	05/31/17 03:04	' 1
Perfluorohexanesulfonic acid (PFHxS)	1.9			1.3		0.75	ug/Kg	*	05/23/17 13:25	05/31/17 03:04	- 1
Perfluoroheptanesulfonic Acid (PFHpS)	3.6	N.		1.3		0.75	ug/Kg	4	05/23/17 13:25	05/31/17 03:04	1
Perfluorodecanesulfonic acid (PFDS)	ND			1.3		0.46	ug/Kg	*	05/23/17 13:25	05/31/17 03:04	. 1
Perfluorooctane Sulfonamide (FOSA)	ND			1.3		0.51	ug/Kg		05/23/17 13:25	05/31/17 03:04	. 1
Isotope Dilution	%Recovery	Qualifier	Lim	its	13		114		Prepared	Analyzed	Dil Fac
13C8 FOSA	9	*	25-	150					05/23/17 13:25	05/31/17 03:04	1


Missed Holding Times: Low and High Biases

537: 14 days to extraction; 28 days from extraction to analysis

533: 28 days to extraction; 28 days from extraction to analysis

Example PFAAs:

Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic Acid (PFTrA) Perfluorotetradecanoic acid (PFTeA) Perfluorohexadecanoic acid (PFHxDA) Perfluorooctadecanoic acid (PFODA) Perfluorobutanesulfonic acid (PFBS) Perfluoropentanesulfonic acid (PFPeS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanesulfonic Acid (PFHpS) Perfluorooctanesulfonic acid (PFOS) Perfluorononanesulfonic acid (PFNS) Perfluorodecanesulfonic acid (PFDS)

Perfluorobutanoic acid (PFBA)

Example Polyfluoroalkyl Precursors:

N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)

N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)

6:2 Fluorotelomer sulfonic acid (6:2 FTSA)

8:2 Fluorotelomer sulfonic acid (8:2 FTSA)

4:2 Fluorotelomer sulfonic acid (4:2 FTSA)

10:2 Fluorotelomer sulfonic acid (10:2 FTSA)

N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)

N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)

N-Methyl perfluorooctane sulfonamide (MeFOSA)

N-Ethyl perfluorooctane sulfonamide (EtFOSA)

Blanks: Method Blanks, Field Blanks, & Equipment Blanks NEH new environmental provisions, inc. 1780

• Purposes:

Method Blank:

To check for potential lab contamination in the sample preparation and analysis step

Field/Equipment Blanks:

To check for potential contamination from ambient field conditions or equipment

 Does each prep batch have its own method blank?

Blank Evaluation

NEH new environmental horizons, inc

- Any PFAS detected in blanks?
- Are there any potential false positive results in samples?
- General Rule of Thumb: If concentration in sample <10x the blank concentration, the result is potentially a false positive
- Applies to lab method blanks as well as equipment blanks

Matrix: Water Prep Type: Total/NA Analysis Batch: 400716 Result Qualifie MDL Unit 0.35 ng/L 2.0 0.49 ng/L Results will be in analytical data package 2.0 0.58 ng/L 0.25 ng/L 0.85 ng/L Perfluorodecanoic acid (PFDA) 0.31 ng/L ND Perfluoroundecanoic acid (PEUnA) 1.1 ng/L ND 0.55 ng/L Perfluorododecanoic acid (PEDoA) ND 1.3 ng/L Perfluorotridecanoic acid (PETriA) Perfluorotetradecanoic acid (PFTeA) 0.29 ng/L 0.20 ng/L ND Perfluorobutanesulfonic acid (PFBS 0.270 2.0 0.17 ng/L 2.0 0.19 na/L ND 2.0 0.54 ng/L 08/03/20 04:46 08/03/20 14:47 ND Perfluorodecanesulfonic acid (PFDS) Perfluorooctanesulfonamide (FOSA) ND 0.35 ng/L N-methylperfluorooctanesulfonamidoa cetic acid (NMeEOSAA) N-ethylperfluorooctanesulfonamidoac 1.9 ng/L etic acid (NEtFOSAA) 2.0 ng/L

Lab Sample ID: MB 320-400500/1-

PFOS in Blank = 2 ng/L

10x Blank = 20 ng/L

Sample conc = 120 ng/L

Real Hit

10x Blank = 20 ng/L

Sample conc = 8 ng/L

False Positive

Isotope Dilution: What is It?

- Sample spiked with KNOWN amount of extracted internal standards (EIS) (aka labeled surrogates)
- EIS match target analytes
 - ¹³C₄PFBA is EIS associated with PFBA
 - ¹³C₄PFOS is EIS associated with PFOS
 - etc. for each PFAS analyte
- Target PFAS result corrected by proportional amount based on isotope
- BENEFITS:
 - Corrects for analytical error associated with matrix
 - Corrects for matrix interferences

Concentration Target PFAS = <u>Target PFAS Area * True Concentration Isotope</u>

Area EIS * Calibration Factor

EPA 537 and ASTM
Method do NOT utilize
isotope dilution

DoD QSM requires isotope dilution

PFAS Analytical Reports

Typical sample result summary form

lentona Dilution

Number of PFAS reported

	D 1.	isotope bilation
Results,	13C8 FOSA	
	Dilution	13C4 PFBA 13C2 PFHxA 13C4 PFOA
	Callagtia	13C2 PFHxA
	Collectio	13C4 PFOA

Percent solids (dry weight)

Isotope Dilution recoveries

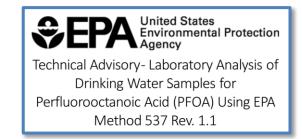
Results will be in analytical data package

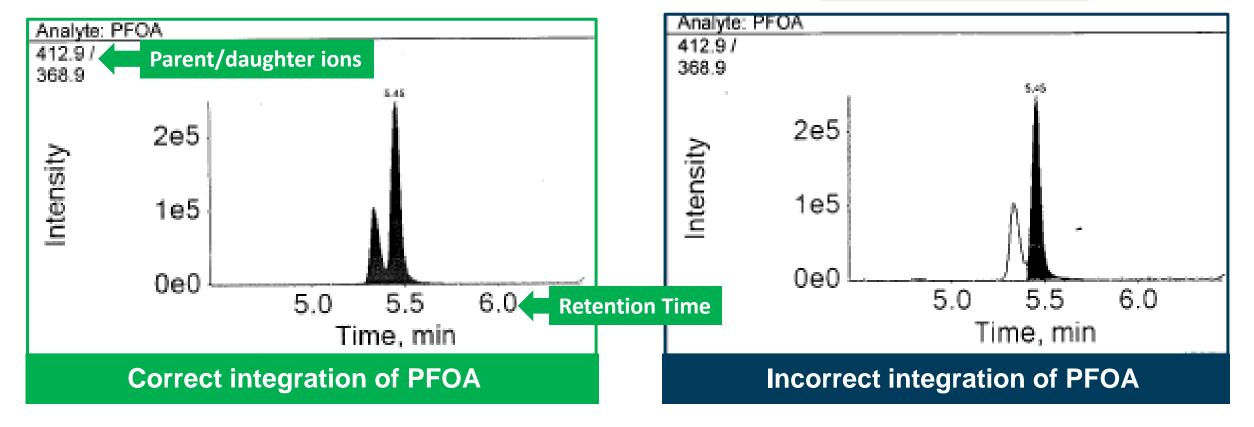
				Client S	ample	Resul	ts				
	Client: xx	xx te: xxxxx Site						Lab Job ID: xxxxx			
		<u> </u>			100		*		Lab Car		40
	Date Coll	Sample ID: xxxx-08 ected: 05/18/17 11:20 eived: 05/20/17 11:50		102	86				Lab Sar	mple ID: xxx Matri Percent Solid	x: Solid
	Method Analyte	: 537 (modified) - Fluor	inated Alky Result	I Substance Qualifier	s RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	10.000000000000000000000000000000000000	utanoic acid (PFBA)	ND		1.3	0.41	ug/Kg	<u></u>	05/23/17 13:25	05/31/17 03:04	1
	1 ornadios	atamore and (1 / b) y		5 90	3	0.83	ug/Kg	· O	05/23/17 13:25		1
~ -		122 123			.3	0.45	ug/Kg	•	05/23/17 13:25	05/31/17 03:04	1
%Re	covery	Qualifier	99	Limits	. 3	0.56	ug/Kg	Ø	05/23/17 13:25		1
					.3	0.65	ug/Kg	æ	05/23/17 13:25		1
	9	*		25 - 15	50 3	0.53	ug/Kg	*	05/23/17 13:25	05/31/17 03:04	1
	3			20-10	J U 3	0.36	ug/Kg	. 33	05/23/17 13:25	05/31/17 03:04	779
	0.7				.3	0.68	ug/Kg	O	05/23/17 13:25	05/31/17 03:04	9
	27			25 - 15)O 3	0.77	ug/Kg	D.	05/23/17 13:25	05/31/17 03:04	
					3	0.59		0		05/31/17 03:04	1
	49		93	25 - 15	50 3	0.37	ug/Kg		05/23/17 13:25	05/31/17 03:04	1
	10		33	20-10	3	0.66	ug/Kg	O	05/23/17 13:25	05/31/17 03:04	1
	40		19		3	0.75	ug/Kg	. 30	05/23/17 13:25	05/31/17 03:04	- 1
	48		- 33	25 - 15	00	0.75	ug/Kg	0	05/23/17 13:25	05/31/17 03:04	1
	(PFHpS)		111	AS		0.75	ugrity		03/23/17 10:20	00/01/17 00:04	
		decanesulfonic acid (PFDS)	ND		1.3	0.46	ug/Kg	Ö	05/23/17 13:25	05/31/17 03:04	. 1
	Perfluoro	octane Sulfonamide (FOSA)	ND		1.3	0.51	ug/Kg	. 0	05/23/17 13:25	05/31/17 03:04	_ 1
	Isotope D	Pilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	C8 FOS	SA	9	•	25 - 150				05/23/17 13:25	05/31/17 03:04	1
	C4 PFE	BA .	27		25 - 150				05/23/17 13:25	05/31/17 03:04	1
	C2 PFI	+xA	49		25 - 150					05/31/17 03:04	1
	13C4 PF0		48	2 6	25 - 150					05/31/17 03:04	1
	13C5 PFI		43		25 - 150					05/31/17 03:04	1
	13C2 PFL		63		25 - 150					05/31/17 03:04	1
	13C2 PFU		64	70 g 201	25 - 150	150				05/31/17 03:04 05/31/17 03:04	1
	13C2 PFL		57		25 - 150					05/31/17 03:04	1
	1802 PFI 13C4 PF0		65 49		25 - 150 25 - 150		89			05/31/17 03:04	1
	13C4-PFI		49		25 - 150					05/31/17 03:04	1
	13C5 PFF		41		25 - 150	907G		₩.		05/31/17 03:04	1
	Method	: 537 (modified) - Fluo	rinated Alky	/I Substance	es - DL						
	Analyte		Result	Qualifier	RL		Unit		원도 항경보다 보고 내용하다 하다.	Analyzed	Dil Fac
	Perfluoro (PFOS)	ooctanesulfonic acid	930		13	8.0	ug/Kg		05/23/17 13:25	05/31/17 13:37	10
	Isotope L	Dilution	%Recovery	Qualifier	Limits		8		Prepared	Analyzed	Dil Fac
	13C4 PF0	20	76		25 - 150				0EM2/47 42:0E	05/31/17 13:37	10

How Can Isotope Dilution Vary Between Labs?

EIS	Lab 1 (%)	Lab 2 (%)	Lab 3 (%)	Lab 4 (%)	DoD (%)
13C3-PFBS	25-150	50-150	26-148	31-159	50-150
13C3-PFHxS	25-150	50-150	34-126	47-153	50-150
13C4-PFHpA	25-150	50-150	35-126	30-139	50-150
13C8-PFOA	25-150	50-150	43-112	36-149	50-150
13C8-PFOS	25-150	50-150	43-115	42-146	50-150
13C9-PFNA	25-150	50-150	32-134	34-146	50-150

- If ≥10% recovery, results most likely not significantly affected.
- If <10% recovery, higher probability that results may be affected
 - Some data validation guidelines recommend rejecting nondetect results if <10%
 - Detected results: potential low bias or indeterminate bias
 - Only associated target PFAS affected


Example:


If 13C3-PFBS exhibits low %R, only affects PFBS.

Linear & Branched Isomers

- Before September 2016, some inconsistency in how this performed
- PFHxS, PFOS, PFOA, NMeFOSAA, NEtFOSAA
- If branched isomers not included, result is biased low.

Only obvious in Level 4 analytical data package

TISSUE LC MS/MS INTERFERENCES

Compound	Parent	lon 1	lon 2	lon 3
Taurochendeoxycholate	498.2	79.8	106.8	123.8
Taurodeoxycholate	498.2	79.8	106.8	123.8
Tauroursodeoxycholate	498.2	79.8	106.8	123.8
PFOS	498.9	79.9	98.9	N/A

- PFOS reported as false positives of up to 120 ng/g in eggs since Bile
 Acids have common transition
- PFOS measured using 499→99 allowing Interference to be eliminated

© SGS SA 2016 ALL RIGHTS RESERVED

Laboratory Control Samples (LCS)

- Purposes: To check the accuracy of the method in the absence of any matrix effects
- What are LCSs?
- Does each analytical or prep batch have its own LCS?

LCS Evaluation

- ✓ Were <u>all</u> target analytes reported?

If LCS recoveries are outside limits:

- POTENTIAL LOW BIAS (affects non-detects and detects)
- POTENTIAL HIGH BIAS (affects only detects)

UNLESS

Percent Recovery < 10%, potentially unusable data

Affects all samples in the analytical batch for the compound(s) out in LCS

Matrix Spikes/Matrix Spike Duplicates (MS/MSDs)

What are these?

• Were these analyses performed on a project sample?

MS/MSD

- ✓ Were <u>all</u> target analytes reported?
- ✓ Were all recoveries within the acceptance limits?

✓ Were all RPDs within the acceptance limits? PRECISION

If MS recoveries are outside limits:

- POTENTIAL LOW BIAS (affects non-detects and detects)
- POTENTIAL HIGH BIAS (affects only detects)

UNLESS

Percent Recovery < 10%, potentially unusable data

Affects only the unspiked sample for the compound(s) out in MS/MSD

Let's Summarize Potential Biases

Blanks

Detected results

All Associated HIGH BIAS Samples in Batch

Holding Times

Missed holding times

LOW BIAS HIGH BIAS

Sample-Specific

LCS

- Low recoveries
- High recoveries

LOW BIAS All Associated **HIGH BIAS** Samples in Batch

EIS, Matrix Spikes

- Low recoveries
- High recoveries

LOW BIAS Sample-Specific Compound-Specific **HIGH BIAS**

Subsampling Water Sample

LOW BIAS >C8 PFSAs & >C10 PFCAs:

Sample-Specific

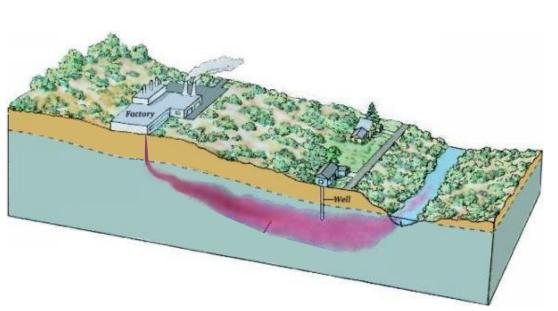
No Methanol Rinse on Bottle

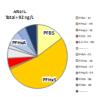
LOW BIAS Long chain PFAAs

Sample-Specific

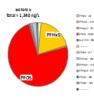
Factors Affecting Data Comparability - PFAS NEH new environmental TRC

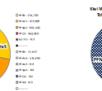
- Field Collection Techniques
- Sample Handling in the Laboratory (e.g., SPE, solids)
- Field / Method Blank issues
- Not using Isotope Dilution for Recovery Correction
- Degradation of Precursors
- Not including Branched Isomers
- Calibration differences (e.g., isotope dilution vs internal standard)
- Sensitivity differences (RLs not the same)
- Compound name differences




Forensics

Chemical Signatures


Signatures reflect various source and fate/transport scenarios



We Understand Signatures

Paper & Food Packaging

- <u>Side-chain</u> <u>fluoropolymers</u>
- PAPs/diPAPs
- NEtFOSE, NEtFOSAA, PFBS, PFOA, PFHxA

Textile & Leather

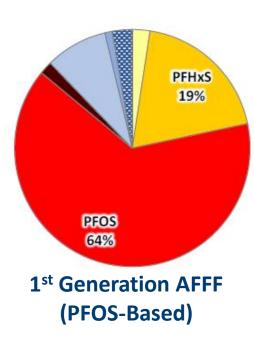
- Polymers
- Polymer raw materials
- PFOA, FTOHs

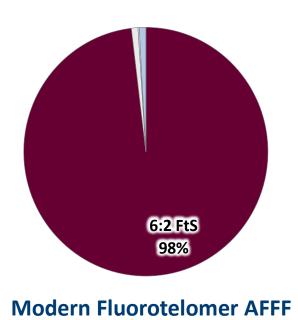
AFFF

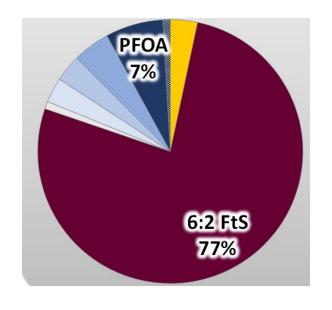
- PFOA, PFOS, PFHxS
- C8 fluorotelomers (8:2 FTS)
- C6 fluorotelomers, PFOA

WWTPs & Landfills

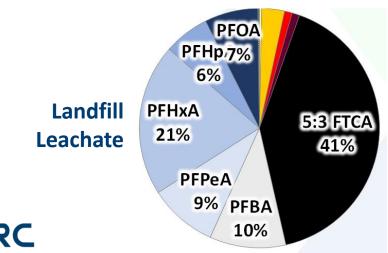
- n:2 FTUCA
- n:3 FTCA (5:3FTCA)
- n:2 FTSA
- EtFOSA

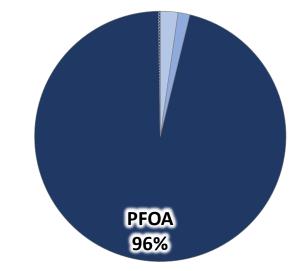

Metal Plating


- PFOS
- 6:2 FTS, 8:2 FTS
- F53B

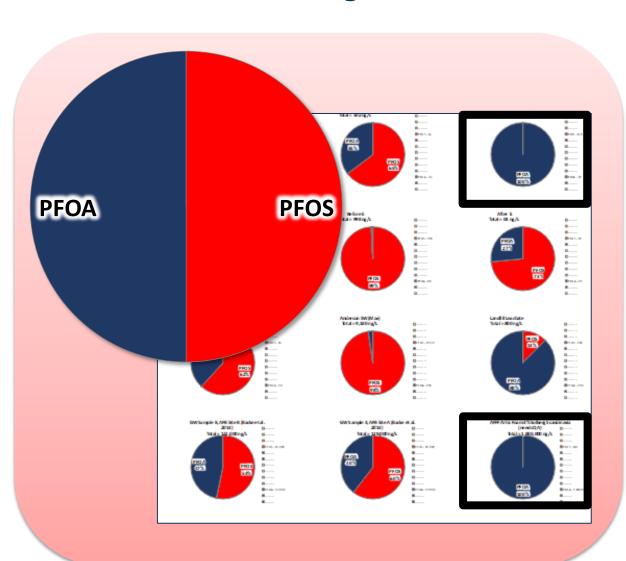


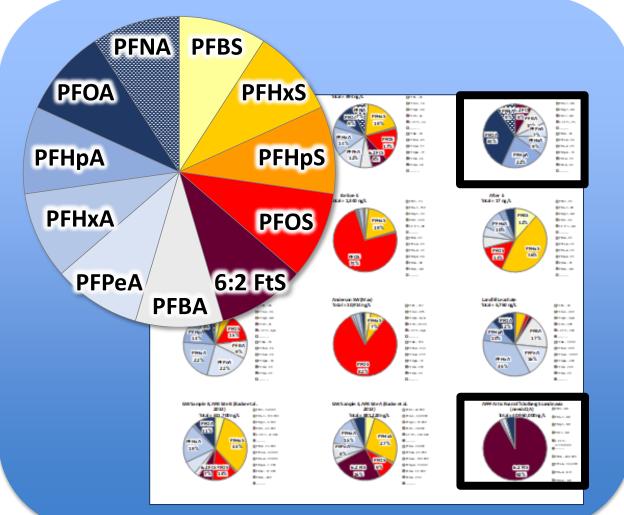
PFAS Source Signature Differentiation





WWTP Effluent from Chrome Plater





Plastics Manufacturing

Example Difference Based on Analytes Selected for Signature Evaluation

Thank you

Questions?

Nancy C. Rothman, Ph.D.

P: (908) 874-5686 | E: NRothman neh@comcast.net www.neh-inc.com

Elizabeth Denly, ASQ CMQ/OE, PFAS Group Program Director

P: (978) 656-3577 | E: <u>EDenly@TRCCompanies.com</u> <u>www.TRCcompanies.com</u>