Considerations for the Assessment of Chlorinated Solvents

Stephen Druschel, Ph.D., PE Nobis Engineering for Nancy E. Kinner University of New Hampshire

Characterizing Chlorinated Solvents September 11, 2007

Coastal Response Research Center

Questions

- During Talk Is OK!
- Also Time for Questions at End of Talk
- Questions Before Break As I have to Go Back to UNH at 11:00am

Topics Covered

- Properties of Chlorinated Solvents
- Fate in Environment
 - Sorption, Dissolution
 - Transport
 - Reactions
- DNAPL Issues

Overarching Considerations and Questions

- Porous (Unconsolidated) Media and Fractured Rock
- Why Do Chlorinated Solvents End Up Where They Are?
- Why Are Chlorinated Solvents So Persistent?
- No Vadose Zone or Vapor Issues Covered Today

Chlorinated Solvents

- Course Focus = Chlorinated Aliphatic Hydrocarbons (CAHs)
 - PCE, TCE, DCE, VC, chloroform, methylene chloride
 - Most used as solvents
 - No aromatic ring structures
 - Rarely 100% pure solvent
 - e.g., PCE often has 5% TCE
 - Waste mixtures are not pure either

Name	Common Name(s)	Abbreviation1	Common Waste Sources	
CHLORINATED ETHENES				
Tetrachloroethene(-ethylene)	Perchloroethene	PCE	Solvent waste	
Trichloroethene(-ethylene)	None	TCE	Solvent waste, degradation product of PCE	
cis-1,2-Dichloroethene(-ethylene)	Acetylene dichloride	cis-DCE	Solvent waste, degradation product of PCE and TCE	
trans-1,2-Dichloroethene (-ethylene)	Acetylene dichloride	trans-DCE	Solvent waste, degradation product of PCE and TCE	
1,1-Dichloroethene(-ethylene)	Vinylidene chloride	1,1-DCE	Solvent waste, degradation product of 1,1,1-TCA	
Chloroethene(-ethylene)	Vinyl chloride	VC	Polyvinyl chloride production waste, degradation product of PCE and 1,1,1- TCA	
CHLORINATED ETHANES				
1,1,1-Trichloroethane	Methyl chloroform	1,1,1-TCA	Solvent waste	
1,1,2-Trichloroethane	Vinyl trichloride	1,1,2-TCA	Solvent waste	
1,2-Dichloroethane	Ethylene chloride	1,2-DCA	Solvent waste, degradation product of 1,1,2-TCA	
I.I-Dichloroethane	Ethylidene chloride	1,1-DCA	Degradation product of 1,1,1-TCA	
Chloroethane	None	CA	Refrigerant waste, tetraethyl lead manufacturing waste, degradation produc of 1,1,1-TCA and 1,1,2-TCA	
CHLORINATED METHANES				
Tetrachloromethane	Carbon tetrachloride	СТ	Solvent waste, fire extinguisher waste	
Trichloromethane	Chloroform, methane trichloride	CF	Solvent waste, anesthetic waste, waste degradation product of CT	
Dichloromethane	Methylene chloride, methylene dichloride	MC	Solvent waste, degradation product of CT	
Chloromethane	Methyl chloride, monochloromethane	СМ	Refrigerant waste, degradation product of CT	

Exhibit 2-1: CAHs Commonly Identified as Environmental Contaminants

Notes: ¹Abbreviations are based on the names in bold italic type. Sources: Sawyer and others 1994; Merck 1989

Coastal Response Research Center

University New Hampsl

542 p. 2-2 Ex. 2-1

Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents

Exhibit 2-2: Molecular Structures of Common CAHs

EPA 542 p. 2-3 Ex. 2-2

Source: Modified from Sawyer and others 1994

Coastal Response Research Center

Effects of Chlorine Substitution Into Aliphatic Structure

- MW ↑, Density ↑
 - CAHs are sinkers (<u>Dense NonAqueous Phase Liquids</u>, DNAPLS)
- Vapor Pressure \downarrow , Aqueous Solubility \downarrow
 - High ug/L to low mg/L range
- Chlorines Are Electrophillic
 - CAHs rarely donate e⁻ and H⁺
 - Key difference vs. petroleum hydrocarbons
- University of New Hampshire

Zone

- Often in bedrock zone
 - At bottom of permeable media (pooling of DNAPL)

CAHs Tend to End Up in the Lower Regions of Saturated

Fate and Transport of Chlorinated Solvents

Coastal Response Research Center

DNAPLs

- Hard to Access if in a Pool of Immiscible Fluid
- Surfactants May Not Help Biodegradation as They Often Do Not Cause Dissolution of Compound
 - Only mobilize them as colloidal, non-aqueous phases
- DNAPL Issues Have Been Subject of Recent ITRC Committees
 - Last talk today

e.g., Bioremediation of DNAPLs

Availability

- To Be Degraded, Contaminant Must Be Available for Remediation
 - Microbes
 - Chemical/Physical oxidizing agent
- Less Available If:
 - Sorbed (adhered) to surfaces
 - In non-aqueous phase (DNAPL pool)
- For CAHs Low Concentration (ug/L to mg/L) in Aqueous Phase as Dissolved Species
- Less Dissolved = Harder to Remediate
 - Many remediation agents tend work best on dissolved species

Sorption

- Function of Contaminant and the Type of Medium
 - Clay vs. sand
 - THF vs. TCE
- Rate of Desorption May Control Degradation Rate
- Sorption Has Positive Effect Because Movement to Downgradient Receptors Is Slower
 - Limits amount of contaminant in solution and being transported with groundwater

 Contrast of CAHs vs. MtBE which is very soluble and moves rapidly with groundwater

Implications of Sorption and Low Solubility: Minimum Substrate Concentration (S_{min}) for Bioremediation

- Concentration of Energy-Generating Substrate Below Which Microbe Gets Insufficient Energy for Growth
- Implications If Contaminant Concentration In Situ
 < S_{min} → No Biodegradation
- Problem Can Be Avoided If:
 - Another energy-generating compound (e.g., glucose) is available in concentration > S_{min}

 Multiple substrates all at low concentrations, but aggregate > S_{min}

Mass Transfer

- Movement of Needed Substances (Substrates) to Cells
- Movement of Wastes Away From Cells
- Cells Can Be on Surfaces (Biofilm) or Floating in Groundwater
 - Normally pristine conditions sorbed to surfaces
 - Expend little energy swimming
 - Substrates flow to them and wastes flow away

- When contamination increases, floating cells increase
 - Less advantage to being attached

Today's "Classification"

- Open (macro) fractures/pores
 - mm to cm apertures
 - Minimal sealing
 - Higher (preferential) flows
- Microfractures/pores
 - µm to mm apertures
 - Partially sealed with minerals and clays
 - Diffusion dominates movement of contaminants, etc.

Classification

- Rock matrix (bulk or host rock) or porous media grain
- Weathering rind
- Stagnant boundary layer of fluid
 - Interface between rock/media surface and fluid

Bulk fluid (porewater)

Subsurface Conceptual Model

Microfractures/Pores vs. Open Fractures/Pores

- Microfractures/pores often hydraulically isolated vs. open fractures/pores
- More reducing than groundwater pumped from open fractures/pores
- All fractures/pores can differ over small distances

 Function of heterogeneity of mineralogy and flow regime

Movements of Solutes Within Fractures/Pores

- Flux (mass transfer) across interface
 - Stagnant boundary layer
 - By molecular diffusion only
 - N_s = Flux

•
$$N_s = \underline{K} (S_o - S_i)$$

 N_s = Flux = mass transferred / unit surface area * time (µg/cm² * d)

- K = Mass transfer coefficient
 - f (temperature, solute diffusion coefficient, fluid types)
 - Surface area / time (cm²/time)

Movements of Solutes Within Fractures/Pores

- $N_{s} = \frac{K}{L} (S_{o} S_{i})$
- L = thickness of stagnant boundary layer across which diffusion occurs (cm)
- S_b = concentration of diffusing substance in bulk liquid (mass/volume) (μ g/L)
- S_i = concentration of diffusing substance on other "side" of stagnant boundary layer (mass/volume)
 (μ g/L)

Factors Controlling Mass Flux

- K = type of substance, environmental conditions, fluid characteristics
 - Molecular size, temperature, fluid viscosity
- Flow regime L thickness of stagnant layer (Flow ↑, L ↓), surface roughness
- Concentration gradient of (S_b S_i)
 - High S_b = highly contaminated zone
 - Low S_i usually = biodegradation

Why Do Chlorinated Solvents End Up Where They Are?

- At the bottom of aquifers
 - They are more dense than water, so they sink
- Sorbed to surfaces of porous media/fractures
 - They can penetrate into the weathering rind (i.e., the matrix)

Why Are Chlorinated Solvents So Persistent?

Coastal Response Research Center

Abiotic Degradation of CAHs

- Hydrolysis, Elimination, Abiotic Reductive Dechlorination
- Rates Slow vs. Biodegradation
 - Only applicable if plume moves very slowly

CAH Biodegradation Processes

- Aerobic Degradation
 - Direct aerobic oxidation of CAH
 - Co-metabolic oxidation of CAH under aerobic conditions
- Anaerobic Reductive Dechlorination
 - Direct anaerobic reductive dechlorination of CAH (Halorespiration)
 - Co-metabolic oxidation of CAH under anaerobic conditions

- Anaerobic Oxidation of VC and DCE
- Many Complex Processes that Will Not Be Considered Today

CAH vs. Petroleum Hydrocarbon Biodegradation

- CAH Is Much More Confusing
 - CAH often acts as an <u>electron acceptor</u>
- Biological Reactions May Not Convert CAH to CO₂
 - Reactions may stop at intermediates (e.g., VC) which can be worse than original CAH present

CAH Biodegradation Generalizations

- More Chlorines Per Molecule, Biodegradation More Likely to be Anaerobic Reductive Dechlorination
 - Carbon atoms in these molecules are highly oxidized because of chlorines
 - So molecules are easily reduced
- Less Chlorines Per Molecules = Aerobic Degradation

More Chlorines = More Sorption

Figure 10.9. Relationships between degree of chlorination and anaerobic reductive dechlorination, aerobic degradation and sorption onto subsurface material.

30

Norris et.al. p. 10-19 Fig. 10.9 Author of this chapter is Tim Vogel.

University of New Hampshi

Coastal Response Research Center

Anaerobic Reductive Dechlorination

- Direct Anaerobic Dechlorination
 - Also called halorespiration or dehalorespiration
- Co-metabolic Anaerobic Dechlorination
- Results of Both Processes Look the Same
- Different Bacteria Perform Them
- Need H₂

Source = fermentation

Anaerobic Reductive Dechlorination

- Chlorinated Solvents are Electron Acceptors (Oxidizing Agents)
- Reduction Reaction
- Hydrogens Replace Chlorines in Molecule
- Need More Reducing Conditions for VC to Replace Chlorine Than PCE or TCE

University a New Hampsh

University of New Hampshire

McCarty Figure 3-8

Electron flow from electron donors to electron acceptors in the anaerobic oxidation of mixed and complex organic materials. Microorganisms that can use chlorinated compounds (PCE, TCE, cDCE, and VC) as electron acceptors in *dehalorespiration* compete for the electrons in the acetate and hydrogen intermediates with microorganisms that can use sulfate, iron (III), and carbon dioxide. SOURCE: P. L. McCarty, 1997b.

Coastal Response Research Center

Reduction Hierarchy

	PCE	4 CI	Strongest Oxidizing Agent	
	TCE	3 CI		
	DCE	2 CI		
University of New Hampshire	VC	1 CI	Weakest Oxidizing Agent	
Coastal Response Research Center				

RDTP Workshop.

Coastal Response Research Center
Energy Generating Processes

- Energy Generated by Transfer of Electrons (Redox Rxn)
- Stored in ATP (Cell's Energy Source)
- Need Electron Donor
 - Loses e⁻
- Need Electron Acceptor
 - Gains e⁻

Catabolism / Energy Generation

- Based on:
 - Energy source
 - Electron donor (redox rxn)
 - Carbon requirement

Basic Respiration: Heterotrophic Bacteria

Electron Transport System (ETS)

- No Organic Molecule Involved
- Pass H⁺ and e⁻ Removed from Organic Molecule Down a Chain (ETS)
 - Series of oxidation / reduction reactions that generate energy
- Need Electron Acceptor at End of Chain (ETS)
 - Terminal electron acceptor (TEA)

Terminal Electron Acceptor (TEA)

- Brought Into Cell
- At End of Electron Transport System
- Accepts Electrons
- Leaves Cells with Electrons

RDTP Workshop.

Coastal Response Research Center

43

Energy Generation / Storage

- When H⁺ Is Pushed Outside Cell Membrane Get Gradient
 - pH (H⁺)
 - Electrical (+)
- Gradients = Potential Energy
- Bring H⁺ Back Inside Cell

 Energy Stored in Higher Energy Phosphate Bonds

Energy Generation / Storage (cont.)

- ADP + P \rightarrow AT \sim PH
 - $+ H^+$
- Release H⁺ and Energy When ATP → ADP
 - Energy used to fuel cell processes

How Far Down ETS Can e⁻ Go?

- e⁻ Can Only be Transferred from One Compound to Another if Receiver Has Higher Affinity for e⁻ Than Donor
 - Gibbs free energy (ΔG_0 ' in kJ/e⁻ equiv)
 - If ∆ G₀' is more + (larger) number than species can donate e⁻ to more – (smaller) number

Coastal Response Research Center

University of New Hampshi

47

Other Factors Affecting Biodegradation

- Other Substances Cells Need
- Abiotic Factors
- Interaction Between Substrates
- Effects of Other Biological Processes
- Bioavailability / Mass Transfer
- Recalcitrance

Acclimation

Interaction Between Substances

- Little is Known About This
- If Multiple Organic Substances Present:
 - One may be preferred
 - Easier to degrade
 - More energy generated
 - Byproducts of one may inhibit other
 - Repression
 - First may enhance degradation of the second
 - Byproducts of first may be needed in degradation of second
 - First may induce enzymes needed for second
 - Synergism
 - Co-metabolism

 Multiple Types of Microbes Accomplish Degradation That Neither Can Do Alone

Coastal Response Research Center

50

Co-Metabolism

- Microbial Transformation of Organic Compound Occurs, But <u>No</u> Energy Gained by Cell
 - Fortuitous oxidation / metabolism
 - Getting energy and N, P, S etc. elsewhere (from another transformation)
 - C Often Not Incorporated Into Cell Biomass Either

Co-Metabolic Enzymes

- Enzymes That Catalyze Other Reactions, Catalyze This Co-Metabolic Reaction
 - Mostly non-specific enzymes
 - e.g., methyl mono-oxygenases that bacteria use to co-metabolize TCE

Effects of Other Biological Processes

- Predation One Organism Eats (Preys Upon) Another
 - Predators
 - Protists
 - Bacteriophage (viruses)
 - Latest data shows protists affect CAH biodegradation

Direct Anaerobic Dechlorination (Dehalorespiration)

- Bacteria Present in Many Environments, But Not Ubiquitous
 - e.g., <u>Dehalococcus ethenogenes</u>; <u>Dehalospirillum</u> <u>multivorans</u>

Electron Donor + Electron Acceptor \rightarrow R-H + Cl⁻ + H⁺ + Energy H₂ R-Cl

 R-H produced can be ethene, CH₄, CO₂, Less Chlorinated R-CI

 Need H₂ and Depletion of Competitive Electron Acceptors (e.g., NO₃⁻, SO₄⁻²)

Dehalorespiration

- Bacteria Gain Energy from this Reduction
- Source of H₂ = Fermentation of Organics Occurring in the Environment
- Can Sequentially Degrade PCE → TCE → DCE → VC → Ethene
 - Most readily for PCE and TCE
 - DCE and VC can accumulate

Impediments to Dehalorespiration

- Competition for H₂
 - Methanogenic bacteria vs. dehalorespirers
 - Dehalorespirers can survive at much lower partial pressures of H₂ (i.e., if H₂ production is at slow rate)
- If NO₃⁻ or Sulfate Reduction Occurring May Limit Dehalorespiration

Enhancement to Dehalorespiration

- Add Simple Organic Substrates to Spark Fermentation → H₂ Produced
 - (e.g., amendments = methanol, lactate, benzoate, molasses, vegetable oil, HRC)

Co-Metabolic Reductive Dechlorination

Anaerobic Reductive Dechlorination Co-Metabolism

- Review Earlier Slides on Co-Metabolism
- Microbial Transformation of Organic Compound Occurs, But <u>No</u> Energy Gained by Cell
- Enzymes That Catalyze Other Reactions, Catalyze This Co-Metabolic Reaction
 - Mostly non-specific enzymes
- Why Does Co-Metabolism Occur?
 - Non-specific enzyme in the microbe converts A→B, but other specific enzymes in cell cannot degrade B

Anaerobic Oxidation of DCE and VC

- Anaerobic Oxidation of VC and Some DCE → CO₂ Under Fe⁺³ Reducing Conditions
- Anaerobic Oxidation of DCE → VC → CO₂ Under Humic Acid Reducing Conditions
- Also Under SO₄-² Reducing and Methanogenic Conditions
- Recent Work by Bradley and Chapelle (USGS-SC)
- Different Pathway
 - Fermentative acetogenic bacteria
- University of New Hampshire
- Generate acetate

Anaerobic Oxidation of VC and DCE (cont.)

• Still Unknown How DCE Degradation Works

Anaerobic Biodegradation

- PCE \rightarrow TCE \rightarrow DCE
 - PCE and TCE strongest oxidizing agents
 - Occurs under less reducing conditions
 - e.g., nitrate and iron reduction
 - Best under more reducing conditions
- DCE → VC → Ethene
 - DCE and VC less strong oxidizing agents

- Definitely need more reducing conditions (sulfate reducing or best if, methanogenic conditions)
- Need more hydrogen present

Aerobic Degradation

- Direct Oxidation of CAHs
- Co-Metabolic Oxidiations of CAH's Under Aerobic Conditions

Coastal Response Research Center

63

Direct Aerobic Oxidation

 CAH Serves as Carbon and Energy Source (i.e., Electron Donor)

Electron Donor+Electron Acceptor \rightarrow $CI^- + CO_2$ e.g., VCe.g., O_2 Aerobic+Reduced TEA

- Done by Wide Variety of Bacteria (Ubiquitious)
- More Prevalent for Less Chlorinated VOCs
 - 1 to 2 Chlorines
 - VC, DCE, DCA, Chloromethane, Methylene Chloride

Aerobic Oxidation Co-Metabolism

- Fortuitous Oxidation of CAHs by Bacteria Using Simple Electron Donors
 - CH₄, Propane, Ethene, Butane, Ammonia, Toluene, Phenol
 - No energy gained

Aerobic Oxidation Co-Metabolism (cont.)

- Enzyme is a Mono-oxygenase
- TCE, DCE, VC, TCA, DCA, Chloroform, Methylene Chloride
- **Epoxide Is Unstable**
 - **Degrades to alcohols and fatty acids**
 - Alcohols and fatty acids biodegraded to CO₂ + H₂O

formed from DCE

Aerobic Oxidation Co-Metabolism (cont.)

Nitrification (Autotrophic Process)

- Aerobic Co-Metabolism Done by Wide Variety of Bacteria
 - Ubiquitious
- Competition Between Primary Substrate (e.g., CH₄) and Cometabolite for Enzyme
 - >1,000:1 Primary Substrate: Chlorinated Solvent Consumed Metabolized

Aerobic Oxidation Co-Metabolism (cont.)

- Process Can Be Stimulated by Adding CH₄ and O₂
 - Alternately, microbes can use toluene or phenol in plume

Coastal Response Research Center

68

Combination Anaerobic / Aerobic Processes

- Anaerobic Reductive Dechlorination Zone (Upgradient)
 PCE → TCE → DCE → VC
- Direct Aerobic Oxidation Zone (Downgradient)
 VC Ethone / Ethone CO

 $VC \rightarrow Ethene / Ethane \rightarrow CO_2$

Why Are Chlorinated Solvents So Persistent?

They Are Tough to Degradation Biologically ("All Stars Must Be Aligned) and They Are Tough to Degrade Physio-Chemically (Abiotic Natural Processes Very Slow; Hard to Get Engineered Agents Distributed *In Situ*)

Final Note on CAHs

CAH Monitoring – Units

- Monitor Parent COC and Progeny
 - Not as mg/L
 - Use M = moles/L

Transformation of PCE to ethene by reductive dehalogenation in a batch reactor and assuming two separate microbial populations, one that converts PCE into DCE, and the other, DCE to ethene. The starting concentration of each population is taken as 0.0001 mg/l.

Ritmann and McCarty Fig. 14.13

72
CAH Stoichiometric Relationships

- For Mass Balance
 - 1 mole PCE \rightarrow 1 mole TCE \rightarrow 1 mole DCE \rightarrow 1 mole VC \rightarrow 1 mole ethene

Conversion of Molar to Concentration

Conversion of Concentration (µg/L) to nM

$$\frac{5 \ \mu g}{L} \ TCE \ x \ \frac{nanomole}{0.132 \ \mu g} \ TCE} = 38 \ nM = \frac{38 \ nMoles}{L}$$

nanomole = $1 \ge 10^{-9}$ moles

Coastal Response Research Center

75

My Deepest Thanks to Steve Druschel for Covering Today's Talk for Me. I am Sorry I Could Not Be With You.

Contact Info for Further Questions or Comments: Nancy Kinner nancy.kinner@unh.edu

Coastal Response Research Center

76