Introduction to Emerging PFAS Treatment Approaches and Technologies

> Dr. Dora Chiang, PE (Atlanta, GA) 7/20/2020

NEWMOA Events

Proven Separation Technologies

Breaking Down PFAS Cycle

Emerging Technology Development

Summary

AGENDA

Proven PFAS Treatment Technologies

- GAC, AER and RO are proven and demonstrated for drinking water and groundwater treatment
- Additional considerations needed for wastewater and landfill leachate treatment
 - Some may contain high PFAS
 - Water quality and cocontaminants can reduce GAC, AER and RO treatment effectiveness

Drinking Water Treatment Solutions from Bench to Full-Scale

Engineering evaluation

- System upgrades
- New system to remove PFAS

Check on PFAS treatability and compatibility with other existing treatment processes

Pilot testing and life cycle assessment

System design, permitting, construction, operation, maintenance, monitoring → Life cycle success

GAC vs Single-Use AER for Drinking Water Treatment

GAC	Single Use AER
7 to 20 minute EBCT	2 to 3 minute EBCT
Larger infrastructure footprint	Smaller infrastructure footprint
Typical bed life: 50,000-120,000 bed volumes	Typical bed life: 250,000-300,000 bed volumes
Less effective for short chain PFAS	Effective for a wider range of PFAS
Backwash is available	Backwash not recommended
GAC media is less expensive (~\$2/lb)	AER media is more expensive (~\$6.5/lb)
Well established technology	Not as extensively practiced as GAC

- Life cycle costs for GAC and IX-R can be comparable but should be confirmed
- Both generate spent media requiring off-site waste management
- Pretreatment may be needed for both technologies to increase media life span

GAC vs. AIX

- Selection of GAC and AER is site-specific
- Both AER & GAC treated the target PFAS effectively, but differences in performance among the media products observed.
- AER chosen as the treatment technology for removing a wider range of PFAS, including shorter chain compounds

Grove Pond PFAS Treatment Facilities

The \$3.1M AER facility construction

Pilot Study Comparing GAC, AER and RO

(Short Chain Data Only)

For all cases, RO is proven to remove short to long chain PFAS

Reverse Osmosis for

PFAS, GenX and Other Emerging Contaminants

- Primary Target Contaminants
 - Per-and Poly-fluoroalkyl Substances (PFAS)
 - GenX
 - PFMOAA, PFMOPrA, PFMOBA, PFO2HxA, etc.
 - Other identified PFAS compounds
 - Additional unidentified PFAS

- Secondary Target Contaminants
 - 1,4-Dioxane
 - Pharmaceuticals and Personal Care Products (PPCPs)
 - Endocrine Disrupting Compounds (EDCs)
 - Pesticides and Herbicides
 - NDMA, Brominated DBPs
 - Other identified compounds
 - Additional compounds not yet identified

Waste Stream Management

- Spent GAC→ Reactivation (some PFAS destruction + off gas collection)→ Reuse
 - Spent GAC regeneration is not recommended
- Single use IX-R \rightarrow High temperature incineration
- Regenerable IX-R→ Chemical regeneration → IX-R reuse→ Hightemperature incineration of regenerant waste
- (Innovation) Regenerable IX-R→ On-site chemical regeneration → IX-R reuse→ On-site destruction of regenerant waste
- RO rejected concentration \rightarrow Diffuse into non-drinkable waters

PFAS Cycle

Breaking PFAS Cycle

Direct benefit from PFAS mass reduction

Treatment Train for Comprehensive PFAS Solution

Remove PFAS to trace ppt levels (current demonstrations for DW treatment)

Reduce PFAS waste streams and generate low-volume **PFAS concentrates**

Destroy PFAS in **PFAS** concentrates

Foam

Foam is nothing new to surface water and WWTP

PFAS Sticks Into Air-Water Interface 15

PFAS in Air-Water

PFAS in Water, Sludge, Foam System

PFAS in Air-Water, Soil System

Engineering PFAS Characteristics Into Treatment Solution Foam Fractionation

- PFAS separation using bubble-formation and PFAS accumulation at the air-water interface
- No sorbents needed
- PFAS foam concentrate layer removed and concentrated
 - Concentration factors can vary based on scale and operation conditions
- PFAS specific applications for groundwater, surface water, wastewater and leachate treatment

Summary – Drinking Water

- With the best practice, PFOS and PFOA treatment down to 70 ppt or lower is achievable
- PFAS treatment is a young practice: Do not generalize or assume
- GAC, IX-R and RO are effective for drinking water protection but all generate waste streams
- Be wary of citing other treatment results on other waters.
 Consider site specific water chemistry!
- Pre-design study can help
 - Select technology and media
 - Identify issues and pre-treatment need
 - Identify optimization approach and methods

Summary – Breaking PFAS Cycle

- High PFAS mass reduction opportunities
 - DW technologies may not be efficient or costeffective
 - Need comprehensive solution separate, concentrate, destroy
 - PFAS destruction is critical for breaking the cycle
 - More fate and transport understanding is needed
- PFAS destruction are undergone pilot testing
- Be specific which PFAS are successfully treated and which ones have limitation

Find more insights: www.cdmsmith.com/pfas

Questions?

Dora Chiang, PhD, PE Emerging Contaminants/PFAS Practice Leader 404-720-1343 chiangsd@cdmsmith.com

