

Introduction

- In situ technologies have a perception problem
- Mechanisms of destruction are unseen
 - Mechanisms are not well understood
 - Physical effects of amendment application (e.g., dilution and displacement) effect concentration data in an identical manner as the desired reactive mechanism

Introduction Continued

- Traditional assessment data is often tangential to the desired information:
 - Is contaminant being destroyed or just being pushed around and diluted?
 - What is the mechanism of the destruction and can it be monitored directly?

Introduction continued

- Use of the advanced diagnostic tools allows remediation professionals to make better decisions to expedite site closure and minimize costs
- Through a series of case studies ASDs will be introduced and their benefits highlighted

MNA Example Georgia Site

- Historical release of coolant containing chlorinated solvent (PCE/TCE) and lesser concentrations of petroleum constituents
- Continuing vadose zone source area
- Dissolved VOC concentrations exceeding 50 mg/l in source area
- I,200-foot long dissolved plume

MNA Example Georgia Site

Traditional MNA Assessment Continued:

- Daughter Products
 - Reductive daughter products, including end products present
- Electron Donors
 - Elevated concentrations of naturally occurring and some anthropogenic electron donor compounds present
- Competing Electron Acceptors
 - Slightly elevated dissolved oxygen (2 to 3 mg/l)
 - Redox couple data consistent with aerobic conditions
- Conclusion
 - Aerobic environment not consistent with traditional MNA assessment criteria

MNA Example Georgia Site

- Challenge
 - Definitively identify plume stability mechanism for the observed decreasing VOC trend
 - Show that the mechanism is active
 - Gain regulatory approval
- Microbial Insights Bio-Trap[®] deployed
 - Bio-Trap[®] samples collected from 4 wells
 - 7 week incubation period

Microbial Insights Bio-trap[®] Samplers

 Bio-Trap® samplers are passive sampling tools that collect actively colonizing microbes

- Composed of 2-4 mm diameter Bio-Sep® beads (25% Nomex® and 75% powdered activated carbon).
 - Large surface area (~600 m2/g)
 - 74% porosity
 - Readily colonized by subsurface microorganisms.

MNA Example Georgia Site

- Phospholipid Fatty Acids (PLFA)
 - PLFAs are components of cell walls and can be used to identify groups of microbes
 - Georgia Site: PLFA data show the presence of a microbial population that is consistent with MNA
- Quantitative Polymerase Chain Reaction (qPCR)
 - qPCR identifies microbes based on nucleotide sequences (i.e., DNA & RNA)
 - Georgia Site: qPCR data identified the presence of a significant population of Dehalococcoides spp (DHC)

MNA Example Georgia Site

- Conclusion with MBTs
 - MBTs conclusively demonstrated the mechanism (i.e., the DHC) of observed plume stability and showed that the mechanism was active
 - DHC is an obligate anaerobe therefore, at a minimum, anaerobic micro-environments that support microbial attenuation of the chlorinated volatile organic compounds (VOCs) must be present
 - State approved MNA
 - Cost savings
 - $MNA CO_2$ emissions over the lifespan of the project are calculated to be 16-percent of the emissions calculated for pump and treat.

(calculated using AFCEE SRT Rev.2 – tier I calculations)

MNA Example - Tennessee Site Elevated concentrations of BTEX and TPH present in groundwater over a 6.5 acre area No NAPL Decreasing dissolved BTEX concentration trends observed

MNA Example Tennessee Site

Evaluation Process

- Three tests were performed by MI:
 - PLFA to gather data on the broader community structure of the microbial ecology.
 - Density gradient gel electrophoresis (DGGE) that provides specific information about microorganisms.
 - A stable isotope probing (SIP), which proves that the chemicals of concern, in this case represented by benzene, are metabolized by the cells.

MNA Example Tennessee Site

- The most important evidence is provided by the SIP test which demonstrated that labeled benzene is being incorporated into the biomass of the organisms at the site

MNA Example New Jersey Site

- Use CSIA to track cleanup at a chlorinated solvent release site
 - The majority of all carbon is present as the ¹²C, but a small percentage of carbon is naturally present as the stable (i.e., not radioactive) ¹³C isotope.
 - Chemical bonds involving the ¹³C isotope are slightly stronger than those of ¹²C and as a result react slower in bond-breaking reactions.
 - The slower reaction rate leads to an accumulation of the ¹³C isotope in the residual contaminant (e.g., TCE). The accumulation of the ¹³C is referred to as fractionation.

MNA Example New Jersey Site				
Initial Post-Treatr	nent R	esults		
	MW-1 Pre-ISCO Post-ISCO		MW-2 Pre-ISCO Post-ISCO	
TCE: CSIA, δ^{13} C (‰) TCE Concentration (µg/l)	-29.6 3,000	-3.7 80	-34.4 400	-25.7 500
MW-1: expected concentration	ion decreases ar	nd ¹³ C fraction	ation	
 MW-2: concentration increase 	se with fraction	ation – TCE w	as oxidized	

MNA Example New Jersey Site							
Pneumatic fracturing	comple	ted to aid	delivery				
	MW-1 <u>Pre-ISCO Post-ISCO T-2</u> Post-Fracturing						
PCE: CSIA, δ ¹³ C (‰) PCE Concentration (µg/l)	-27.3 6,000	-16.8 80	-33.1 600	-23.6 3,000			
	MW-3 <u>Pre-ISCO Post-ISCO T-1</u> Post-ISCO T-2 Post-Fracturing						
PCE: CSIA, δ^{13} C (‰) PCE Concentration (µg/l)	-28.5 30,000	-27.8 20,000	-28.7 9,000	-25.8 60,000			
Fractionation of aImproved remedy	larger (perforr	concentra mance	tion obse	rved			

Bioremediation Example California Site

- Post 3DMe application
 - Higher energy yielding electron acceptors depleted in concentration, the redox potential decreased, and conditions favorable for microbially mediated dechlorination were established
 - DCE Stall
- Challenge: assess the likelihood of successful bioaugmentation
- Microbial Insights Bio-trap[®] Assembly deployed
 - MNA (non-amended Bio-trap[®]) and bioaugment (amended Biotrap[®] augmented with SDC-9) were deployed as an assembly
 - 62-day incubation period

