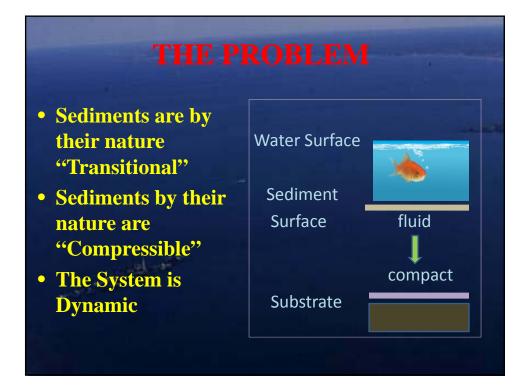
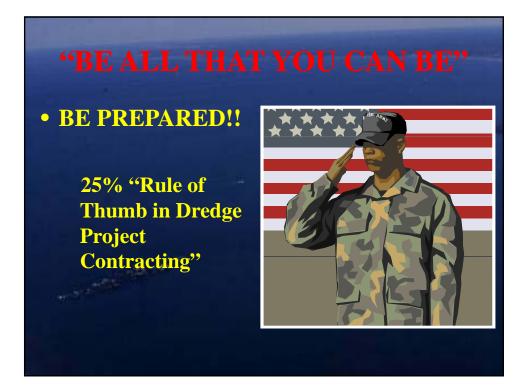
APPROPRIATE SAMPLING

(AND OTHER RELEVENT THINGS TO CONSIDER WHEN SAMPLING FOR AQUATIC SYSTEM CHARACTERIZATION)


Presented By:


Jay A. Borkland, PG Apex Companies, LLC

- Contaminants of Concern
- Sample Collection Planning (Not to be Confused with a Sampling Plan)
- Sampling Environments
- Field Conditions
- Parameters to Consider:
 Physical, Chemical, Biological
- Sampling Equipment
- Cost Considerations

SAMPLE COLLECTION PLANNING Not to be Confused with Planning for Sampling) CONTAMINANTS OF CONCERN

Elements & compounds chosen because of their:

- Toxicity;
- Persistence in the environment;
- Ability to bio accumulate; and
- Widespread & consistent occurrence in NE in estuarine, marine, and freshwater sediments and organisms.

CONTAMINANTS OF CONCERN

Chemical analysis for:

- Routine metals (8): Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc
- PAHS (16): Semi Volatile, Insoluble, Constituents of Petroleum Products, Fuel, etc.
- PCBS (18): NOAA Congeners (not reported as Aroclors)
- Pesticides (14): including DDT & degradation products, Aldrin, Endrin, Lindane, Methoxychor, Toxaphene, etc.

SAMPLE COLLECTION


• Environment Type:

- Marine:

- Coastal Beach / Dune
- Coastal Rocky
- Embayment
- Harbor
- Port
- Ocean: Shoal / Deep

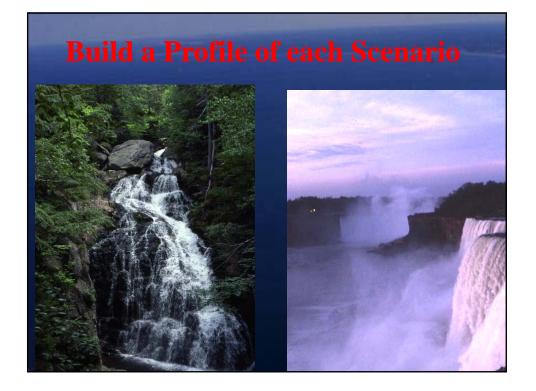
- AnthropogenicIndustrial Lagoon
 - Gully / Drainage Structure

 - Pipeline
 - Outfall

SAMPLE COLLECTION

• Many Variables that **Effect Success/Results:**

- Environment
- Field Conditions
- History
- Hydrology
- Geology
- Biota
- Anthropogenic Influence
- Weather



7

SAMPLE COLLECTION PLANNING

- Know Your Goals
 - Start with a Clear View of the Finish Line
 - What Type of Testing is Going to be Conducted?
 - How is the Information Going to be Used?
 - What are the Field Conditions?

SAMPLING CONSIDERATIONS FOLLOW THROUGH

- Once you have Profiles built – it is then time to consider equipment and procedures.
- Four Main Applications to Consider:
 - Design
 - Construction Monitoring
 - Post-Construction Monitoring
 - Operation and Maintenance

SAMPLE COLLECTION CONSIDERATIONS

- For Each Application, Consider the Parameters for Each Media Assessment:
 - Sediment Character
 - Physical
 - Chemical
 - Water Quality
 - Physical
 - Chemical
 - Biological
 - Sediment Impact
 - Water Quality Impact

SAMPLE COLLECTION CONSIDERATIONS

- Chemical Parameters Sediment:
 - What are Reason for Data Need
 - Remediation
 - Capping
 - Dredged Material (DM) Disposal
 - Material Sorting
 - Type of Information
 - Chemical Content of Sediment
 - Contamination in Sediment
 - Leachability
 - Level of Data Called For
 - Field Screening
 - Field Laboratory Analysis
 - Certified Laboratory Analysis

SAMPLE COLLECTION

Water Quality - Reason for Data Need

- Environmental Assessment
- Design
- Remediation
- Construction Monitoring
- Post-Remediation Monitoring
- Long Term Monitoring

- Type of Information

- Water Clarity / Sediment Load
- Water Chemistry
- Contamination (Chemical or Biological)

- Level of Data Need

• **Biological**

- Field Screening = Construction Monitoring
- Field Laboratory Analysis = Characterization
- Certified Laboratory Analysis = Design

- Level of Data Need

- Bioaccumulation

Risk Assessment

• Dredge Project

- Type of Information - Species Present

- Field Counts
- Field Analysis
- Certified Laboratory Analysis

SAMPLE COLLECTION CONSIDERATIONS

• Biological

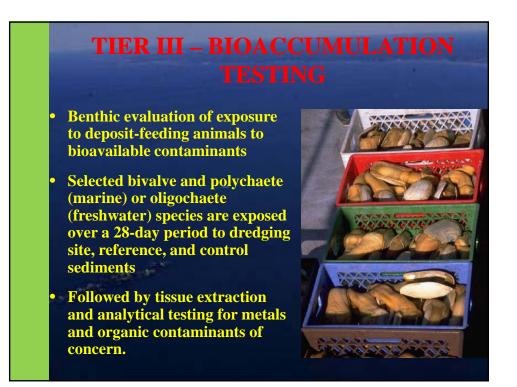
- Needed for Permitting
- DO NOT Assume you will not need
 Biological sampling
 just because you are
 cleaning up
 contaminated
 sediments!!

EXAMPLE TIERED TESTING APPROACH - RIM

- Successive levels of investigation with increasing effort & complexity;
- Generates information to evaluate proposed disposal of dredged materials in open water;
- Optimizes resources by focusing on potential
- impacts from marginal
 projects (not those where
 adverse impacts are clear)

FIERED TESTING APPROACH - RIM

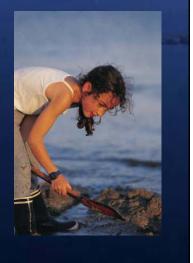
- Tier I Evaluate existing information and identify contaminants of concern.
- Tier II Water column and potential Bioaccumulation Analyses (based on Sediment Chemistry Data)
- Tier III Toxicity and Bioaccumulation Testing
- Tier IV Long-term Bioassays & Bioaccumulation. Tests, Risk
- & Bioaccumulation. Tests, Risk Evaluations and other casespecific testing/ evaluations


TIER III – WATER COLUMN EVALUATIONS

- If Tier II chemical testing is inconclusive, water column bioassays are run.
- Evaluate potential toxicity of dissolved and suspends components of dredge material after discharge
- Expose fish and pelagic crustaceans (mysid shrimp) for 96 hrs. and planktonic intertebrate larvae for 48 hrs. to dilution series.

TIER III – WHOLE SEDIMENT TOXICITY TESTS

- Benthic evaluation of toxic response after deposition of dredge material
- Amphipod and nonamphipod species selected based upon marine/ estuarine vs. freshwater
- Observe Mortality,
- biological activity, physicalbehavioral abnormalities.

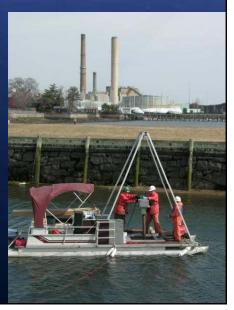

SEDIMENT SAMPLING CONSIDERATIONS FOR CHEMICAI CHARACTERIZATION

- Containers provided by the lab as a QC measure, precleaned glass jars with Teflon lids.
- Holding Times Most Metals – 180 days; Mercury – 28 days; Organic compounds – 14 days until extraction.
- Preservation For all parameters – refrigeration @ 4 °C.

- Organics if extracted within 14 days, extract can be held for 180 days.
- Freezing provides indefinite preservation.
- Chain of Custody (forms, seals and possession)
 Begins with receipt of sample containers through to delivery to lab.
- QA/QC Samples the lab may require collection of blank, duplicate and split samples.

EQUIPMENT:

- "Disturbed" Sediment Samp
- Hand Sampling / Coring
 - "Disturbed"
 - Shovel / Trowel
 - Hand-auger
 - Modified Hand Drilling
 Technique
 - "Un-Disturbed":
 - Push-Tube
 - Russian Peat Corer



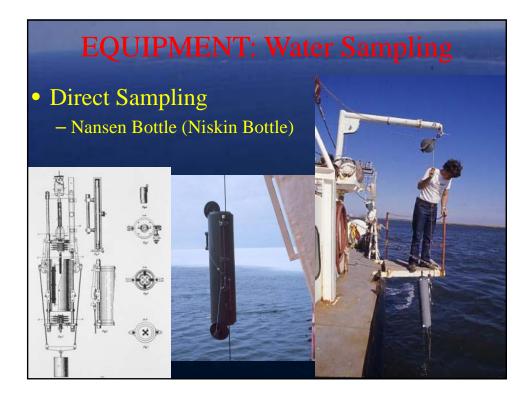


EQUIPMENT: "Undisturbed" Sediment Sampling

- Vibracore: -Light-duty
 - -Heavy-duty
 - -Full-Tube
 - -Short-Tube

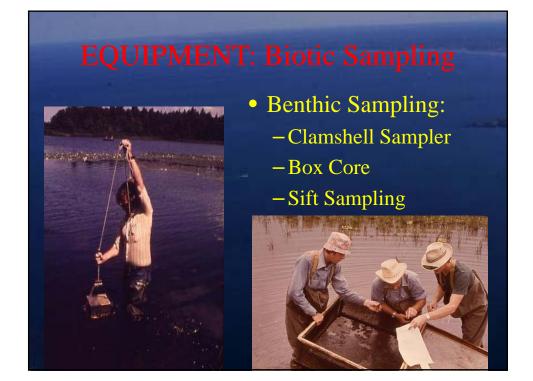
<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

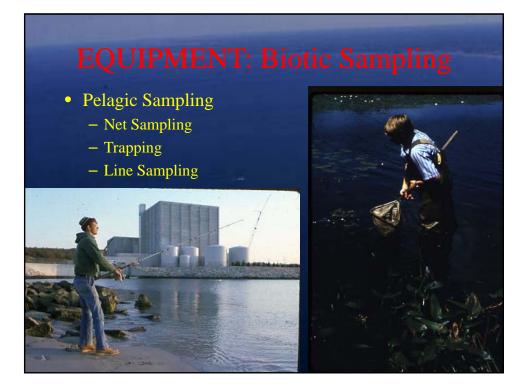
EQUIPMENT: Water Quality


• Indirect Measurement:

Turbidity Monitoring = Turbidity Meter

Current Monitoring = ADCP (Acoustic Doppler Current Profiler)



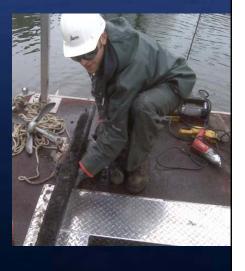

EQUIPMENT: Biotic Sampling

- Benthic Organism Sampling
 - Grab Samples (Diving)

Critical Issues, Pitfalls, and What-to-do-about-Them

• Position and Location Accuracy!!!

- ≻ Use Global Positioning !!!
- ➢ Differential GPS !!!
- > Real Time Corrections !!!
- Tide Gauge Readings every 15-minutes !!!
- Collect Position Reading
- Directly Over Sampler !!!
- ➤ Measure Water Depth !!!
 - We Use A Fathometer !!


Critical Issues, Pitfalls, and What-to-do-about-Them

Sediment Thickness!!

- Sediment Compression
 - Push-Tube
 - Vibracore
 - Drill Rig
 - "Fluff Layer" = Mayonnaise !!!

➢ <u>Measurements</u>

- Accurate Bottom Depth
- Penetration
- Recovery
- Apply Corrections Accurately !

Critical Issues, Pitfalls, and What-to-do

• "Fluff Layer"

- Liquidy Sediment = difficult to discern top
- Accurate Measure = Fathometer
- If Probe, must have sensitive probe plate
- Mayonnaise grades to clayey texture = so bottom of layer is not easy to define either!!

Critical Issues, Pitfalls, and What-to-do-about-Them

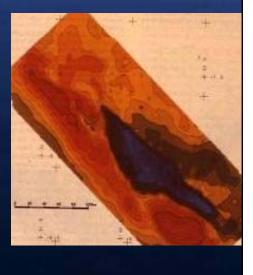
• Water Content in Sediments

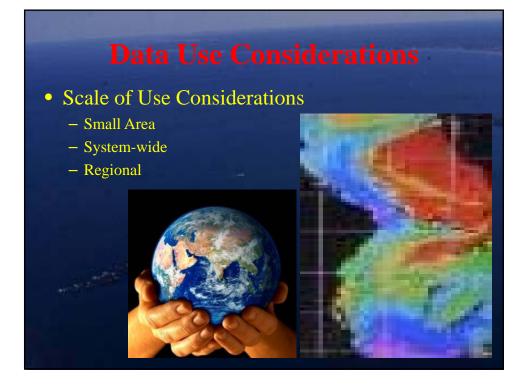
- Importance
 - For Analytical Calibration
 - For Material Handling
 - For Disposal
 - Preservation
 - Water-tight Sampler
 - Sealed Sample Container
 - Careful Collection

Benefits of Remote Sensing and Imaging for Sampling

- Removes Blind Approach
 - Provides Guiding Information
 - Sub-bottom Profiling
 - Side Scan Sonar
 - Ensures Accurate Position Information During Collection
 - Fathometry
 - Positioning

Know Your Bottom !!!


- Is It:
 - > Muddy / Clayey / Peaty
 - **≻** Sandy
 - > Gravelly
- Check It:
 - > Probes
 - > Geophysics



Data Use Considerations

- Know the Final Use
 - Comparison to Standards
 - Relative Values
 - Maps and Charts
 - Contoured Values vs. Sectors
 - Statistics
 - GIS

Cost Considerations

• Large vs. Small Project

- Appropriate Planning
- Wise Use of Resources
- Proper Equipment Selection
- Statistically Relevant Minimal Sampling
- Cheap and Cheery Strategies
 - Hand Sampling and Hand Drilling
 - Vibracore over Drill Rig
 - Composite Samples

Example Costs

- Grab Sampling = \$50/sample
- Hand Drilling = \$100 ea. core
- Vibracore = \$ 500 ea. Core
- Drill Rig = \$ 1,000 ea. Hole to

\$10,000 ea. Hole

