

THE NEXT WAVE IN CLEANUP: WHY SEDIMENTS? WHY NOW?

- End of Pipe = The End of the Road for Contamination.
- Non-Point Source Pollution has Finally Caught Up with Us.
- Out of Site, Out of Mind (Until It Starts Showing Up in Our Fish).
- It's Expensive! (But Can No Longer be Ignored...).
- Infrastructure Repair Cycle is Here!

TOPICS

- Format
- References and Sources
- Planning
- Setting
- Types of Projects
- Key Considerations
- Remedial Technologies
- Regulations
- **O&M**
- Implementation
- Evaluation

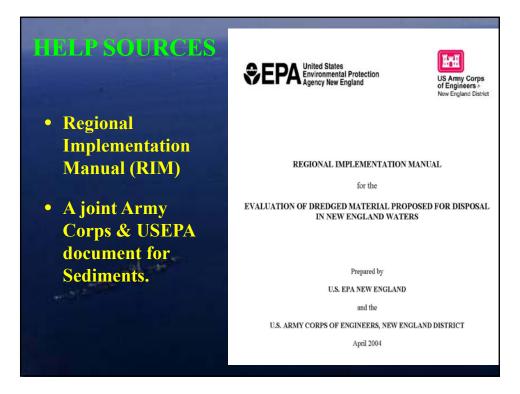
PRESENTATION FORMAT

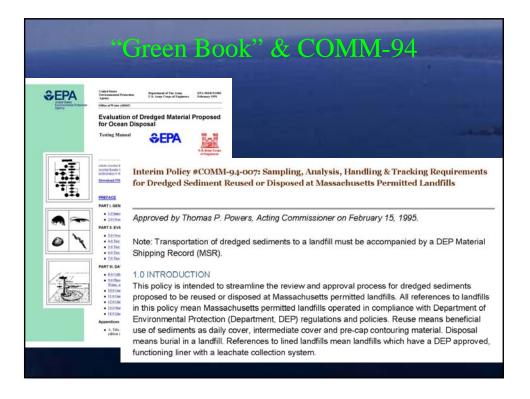
- a) Key considerations for selection:
 - > Marine
 - > Lacustrine
 - > Riverine
- b) Regulatory Framework
- c) O&M
- d) Issues With Implementation
- e) How To Evaluate Success

DEFINITIONS

A word about waterways definitions.

• Common Definitions:


- Environmental Bucket
- Dredge-pack
- Water Quality
- Resource Area
- Monitored Natural Recovery
- Bioremediation
- Over-dredge
- Dewatering
- Wind-rows



REFERENCES & INFORMATION SOURCES

- USEPA (Sediment Management Document)
- USACE
- States / Regulations
- Other

ADDITIONAL INFORMATION SOURCES

USEPA

Dredging Operations Technical Support Program Guidance Documents <u>http://el.erdc.usace.army.mil/dots/guidance.html</u>

Evaluation of Dredged Material Proposed for Ocean Disposal http://www.epa.gov/owow/oceans/gbook/gbook.pdf

New Sediment Decontamination Technology Shows Promise (1999) http://yosemite.epa.gov/opa/admpress.nsf/7144dd430c47561885257018004c77a3/d3235 9e97fd9dd2e85257245005ba4a1!OpenDocument

EPA's Contaminated Sediment Management Strategy (1998) http://www.epa.gov/waterscience/cs/stratndx.html

Selecting Remediation Techniques for Contaminated Sediment (1993) <u>http://www.epa.gov/waterscience/cs/library/remediation.pdf</u>

Evaluating Environmental Effects of Dredged Material Management Alternatives (1992) <u>http://www.epa.gov/owow/oceans/</u>

ADDITIONAL INFORMATION SOURCES

USEPA (cont.)

Contaminated Sediments: Relevant Statutes and EPA Program Activities (1990) http://www.epa.gov/waterscience/cs/library/statutes.pdf

An Overview of Sediment Quality in the United States (1987) http://www.epa.gov/waterscience/cs/library/overview.pdf

USACE

Beneficial Use of Dredge Material (2009) http://el.erdc.usace.army.mil/dots/budm/budm.cfm

Regional Implementation Manual (RIM) Evaluation of Dredged Material Proposed for Disposal in New England Waters - (2004) <u>http://www.nae.usace.army.mil/reg/regionalimplementationmanual.pdf</u>

Engineering and Design - Environmental Engineering for Coastal Shore Protection (1989) http://140.194.76.129/publications/eng-manuals/em1110-2-1204/toc.htm

ADDITIONAL INFORMATION SOURCES

State/Regulations

314 CMR 9.00: 401 Water Quality Certification for Discharge of Dredged or Fill Material, Dredging, and Dredged Material Disposal in Waters Within the Commonwealth - June 2009 http://www.mass.gov/dep/water/laws/regulati.htm#wqual

310 CMR 9.00: The Massachusetts Waterways Regulations (Chapter 91) - June 2009 <u>http://www.mass.gov/dep/water/laws/regulati.htm</u>

310 CMR 30.00 Hazardous Waste Regulations relating to Dredged Material <u>http://www.mass.gov/dep/recvcle/laws/regulati.htm</u>

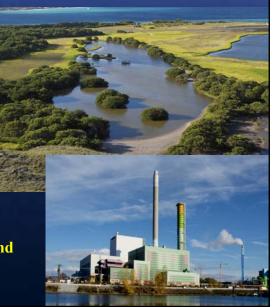
Managing Hazardous Wastes http://www.mass.gov/dep/recvcle/laws/policies.htm

Interim Policy # COMM-94-007 - Interim Policy for Sampling, Analysis, Handling and Tracking Requirements for Dredged Sediment Reused or Disposed at Massachusetts Permitted Landfills (1995) <u>http://www.mass.gov/dep/recycle/laws/dredge.pdf</u>

FRAMEWORK PROCESSES

- Superfund
- RCRA
- State Cleanup / Regulation Enforcement
- Brownfields
- Navigational Dredging
- Infrastructure Improvement
- Stormwater / CSO
- Resource Recovery (i.e., weed removal, etc.)

WHY IS IT IMPORTANT TO PLAN?


- Achieve Goals
- Avoid Costly Mistakes
- Lasting Success

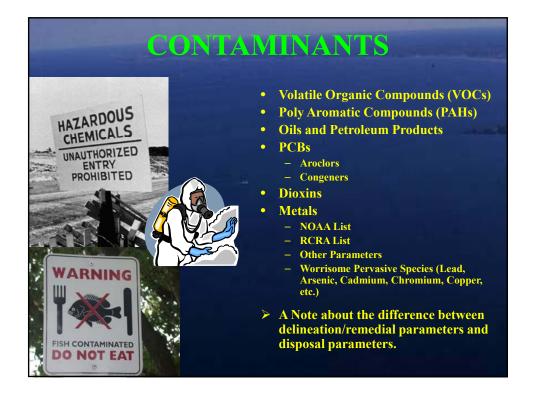
Case Law Supports: In many New England states Contractors can declare "*Changed Conditions*" for any volume change greater than 20% of that estimated in the Specifications – allowing contractors to completely re-price, even after the project is complete.

PROJECT TYPES: (Settings)

- Ocean
- Estuary
- Salt Marsh
- Port
- Harbor
- Beach
- Bank
- Stream / River
- Pond
- Lagoon & Industrial Pond
- Raceway



<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row>


Know Your Bottom !!! • Is It:

- > Muddy / Clayey / Peaty
- > Sandy
- > Gravelly
- Check It:
 - > Probes / Samples
 - ➤ Geophysics

TYPES OF SITES / PROJECTS

(Small, Medium, Large)

Parameters:

- Areal Extent
- Volume of Material
- Water Depth
- Type of Contaminants
- Remedial Process
- Regulatory Process

➢ In General:

- Small Projects less than a couple thousand cubic yards, State/Local permitting with minimal federal permits, and simple remedial process;
- Large projects hundreds of thousands to millions of cubic yards, Superfund or similar process, complex remedial process;
- Everything in between.

KEY CONSIDERATIONS FOR SELCTION OF REMEDIAL TECHNOLOGIES

- Volume
- Response of Contaminant(s) to Remedial Technologies
- Contaminant Dispersion: (Parse into water?)
- Dewatering Requirements
- Transport Logistics
- Disposal Requirements
- Site Logistics (Lay-down area)
 - > Dewatering
 - > Disposal

KEY CONSIDERATIONS FOR SELCTION OF REMEDIAL TECHNOLOGIES

✤ Realistic GOALS should be developed after careful consideration of all Site Characteristics.

What information is needed from Site Characterization?:

- Volume/Volume = Important!!
- Tolerances = Important in Contracting!
- Extent (Area)
- Contamination Profile (Mixed or Single)
- Type of Sediment
- Acceptable Residuals
- Technology Performance (Destruction Efficiency)
- Water Depth and Flow Regime
- Physical Logistics Movement Constraints
- Resources that may be Impacted
- Water Quality Goals
- Other Logistics

TYPES OF REMEDIAL TECHNOLOGIES

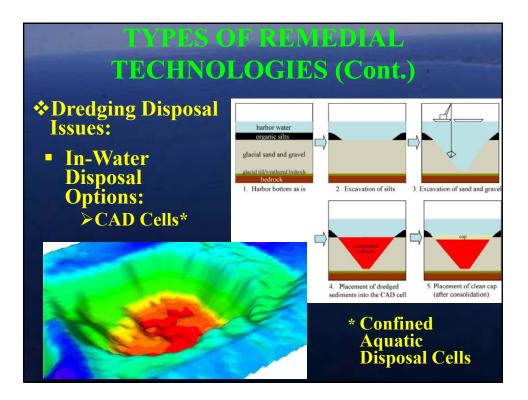
• No Action

- Monitored Natural Recovery
- Removal (Dredging)
 Issues:
 - >Wind Rows
 - ≻Tolerances
 - > Methods
 - Mechanical
 - Hydraulic
 - Mud Pig
 - Rhinoceros
 - > Dewatering

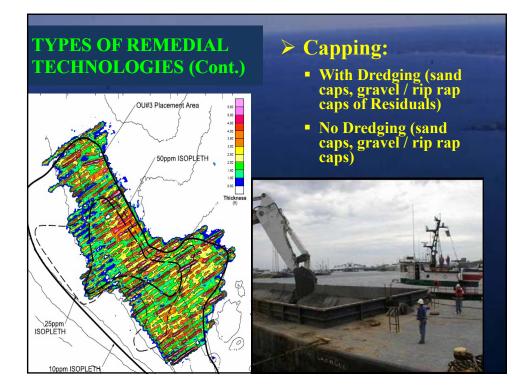
TYPES OF REMEDIAL TECHNOLOGIES (Cont.)

Dredging Disposal Issues:

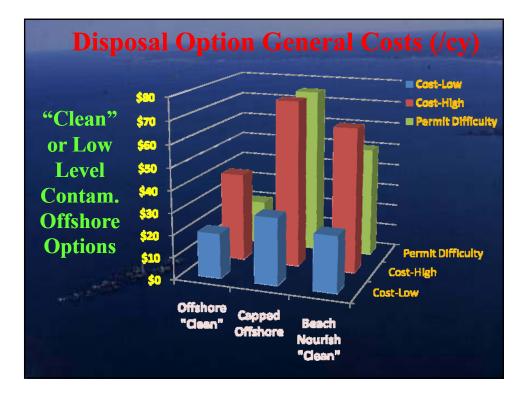
- Open Ocean Disposal: No or Low Contaminants
- Upland Disposal Options:
 - Untreated (Usually Landfill)
 - BUD (Beneficial Reuse)
 - Landfill (Cap / Fill)
 - Excitu Treatment and Disposal or Reuse


TYPES OF REMEDIAL TECHNOLOGIES (Cont.)

*****Dredging Disposal Issues:


Upland Disposal Options:

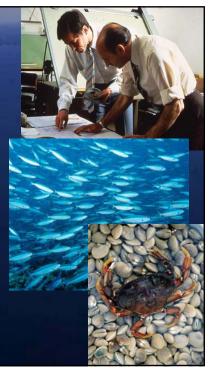
- Stabilization (Cement / Lime)
- Solidification


Tour de France of Disposal Options Contaminated - Upland Options

<u>Upland Landfill</u> = \$\$\$ and No Salt.

- Upland Staged Reuse Facility = Chem. Profile must match.
- <u>Upland Beneficial Reuse as Fill</u>
 - ***** With Treatment if can't match Contaminant Profile
 - *****With Amendment if can match.
 - ***** "Farmed" for dry-out.
- Upland Beneficial Blending
 With Asphalt
 - *As Fertilizer

<image>



REGULATORY CONSIDERATIONS

> Permits!

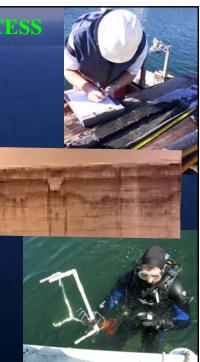
- Will be required in one form or another.
- Move resources (shellfish) before start?
- Water Discharge Permits NPDES?
- Resource Monitoring?
- Regulatory Interface / Permits = things to consider...
 - ✓ BUD use = may require permits for the "receiving" facility.

REGULATORY CONSIDERATIONS (Cont.)

- Regulatory Interface / Permits = things to consider (cont.)
 - CAD Cells → need to get rid of "clean sand"
 - CDF's → filled land → may need separate permit (like pulling <u>#@%^</u> to get approval for filling)
- Resource Agencies
 - Fish, Shellfish, Mammals, Birds, Reptiles, Amphibians, Wetlands
- Cultural / Archaeological Resources

O&M CONSIDERATIONS

- ➤ Erosion
- ➢ Sedimentation
- > Residual Contaminants
- Movement of Sediment
- Dispersion / Dissolution into water
- **Resource** Uptake
 - plants / animals
 - populations both sedimentary and transient
- > Continuing Sources


IMPLENTATION ISSUES

- Working "Blind" (Underwater - Can't see what doing)
 - Testing = Surveys/ SSS / Sub-bottom/ Probes/ Samples.
 - ➢ Need to Monitor:
 - Water Quality
 - Sediment Movement
 - Biota
- > Measuring Against Goal
- > Depth of Removal
 - Over-dredge Tolerances
- > Thickness of Cap
- > Laydown Area Logistics
- > Disposal Site Logistics

HOW TO EVALUATE SUCCESS

- > Comparison with Standards
- > Surveys
- > Sampling
- Long-Term Water and Sediment Monitoring -
- **Biotic Monitoring**
- Mass Removal
- > Disposal Site / Treatment
- > Thickness of Cap
- > Integrity of Cap
- > Repopulation
 - Capped and Uncapped Areas

ADDITIONAL INFORMATION: REGULATORY SAMPLING FOR SEDIMENT REMEDIATION

The following slides present excerpts from a previous presentation on sampling for sediment characterization for remediation.

SAMPLE COLLECTION CONSIDERATIONS (Cont.)

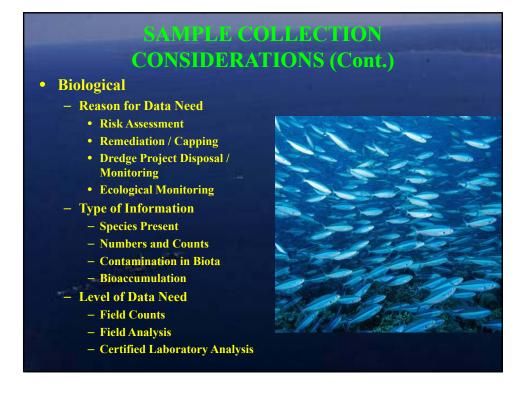
- Chemical Parameters Sediment:
 - What are Reason for Data Need
 - Remediation
 - Capping
 - Dredged Material (DM) Disposal
 - Material Sorting
 - Type of Information
 - Chemical Content of Sediment
 - Contamination in Sediment
 - Leachability
 - Level of Data Called For
 - Field Screening
 - Field Laboratory Analysis
 - Certified Laboratory Analysis

SAMPLE COLLECTION CONSIDERATIONS (Cont.)

- Reason for Data Need

- Environmental Assessment
- Design

Water Quality

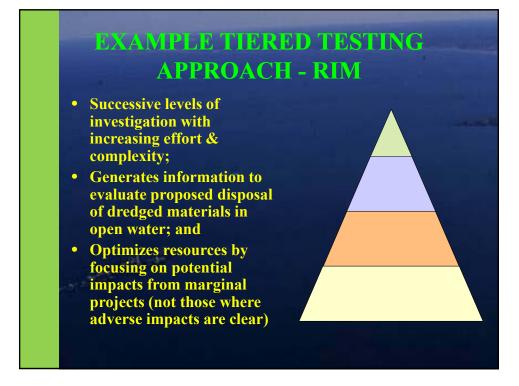

- Remediation
- Construction Monitoring
- Post-Remediation Monitoring
- Long Term Monitoring

- Type of Information

- Water Clarity / Sediment Load
- Water Chemistry
- Contamination (Chemical or Biological)

- Level of Data Need

- Field Screening = Construction Monitoring
- Field Laboratory Analysis = Characterization
- Certified Laboratory Analysis = Design



SAMPLE COLLECTION CONSIDERATIONS (Cont.)

• Biological

- Needed for Permitting
- DO NOT Assume you will not need
 Biological sampling
 just because you are
 cleaning up
 contaminated
 sediments!!

TIERED TESTING APPROACH - RIM

- Tier I Evaluate existing information and identify contaminants of concern.
- Tier II Water column and potential Bioaccumulation Analyses (based on Sediment Chemistry Data)
- Tier III Toxicity and Bioaccumulation Testing
- Tier IV Long-term Bioassays & Bioaccumulation. Tests, Risk Evaluations and other casespecific testing / evaluations

TIER III – WATER COLUMN EVALUATIONS

- If Tier II chemical testing is inconclusive, water column bioassays are run.
- Evaluate potential toxicity of dissolved and suspends components of dredge material after discharge
 - Expose fish and pelagic crustaceans (mysid shrimp) for 96 hrs. and planktonic intertebrate larvae for 48 hrs. to dilution series.

TIER III – WHOLE SEDIMENT TOXICITY TESTS

- Benthic evaluation of toxic response after deposition of dredge material
- Amphipod and nonamphipod species selected based upon marine / estuarine vs. freshwater
- Observe Mortality, biological activity, physicalbehavioral abnormalities.

TIER III – BIOACCUMULATION TESTING

- Benthic evaluation of exposure to deposit-feeding animals to bioavailable contaminants.
- Selected bivalve and polychaete (marine) or oligochaete (freshwater) species are exposed over a 28-day period to dredging site, reference, and control sediments.
- Followed by tissue extraction and analytical testing for metals and organic contaminants of concern.

