Page S1

Supporting Information

Zwiterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foams Formulations and Groundwater from U.S. Military Bases by non-Aqueous Large-Volume Injection HPLC-MS/MS

> Will J. Backe,^a Thomas C. Day, ^a and Jennifer A. Field ^{b, c} Environmental Science & Technology, 2013, 47, 5226-5234

^a 153 Gilbert Hall, Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003

^b 1007 Agricultural and Life Science Building, Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon 97331-4003

^c Corresponding author: E-mail: jennifer.field@oregonstate.edu Fax: (541) 737-0497

Table of Content

Chemicals	52
Groundwater Sampling Details for Sites A, B, and C	52
Representative Subsampling	53
Estimating Analyte Concentrations Assuming Equal Molar Response	54
Absolute Extraction Efficiency	54
References	55
Table S1. Descriptive names and acronyms of the newly-identified target analytes	56
Table S2. Analyte precursor ions, product ions, and compound-dependant acquisition	
parameters. ^a	57
Table S3. Calibration range, number of points, R ² , and internal standards used for each	
quantitative (Qn) and semi-quantitative (Sq) analyte and the corresponding calibration curve	
used for each qualitative (QI) analyte	59
Table S4. Percent absolute extraction efficiency (% AEE) (n = 5, \pm 95% CI) for quantitative (Qn)	
and semi-quantitative (Sq) analytes. ^a	LO
Table S5. Concentrations (mg/L) of newly-identified PFAS and fluorotelomer sulfonates in	
fluorotelomer-based aqueous film-forming foam formulations from different manufacturers	L1
Table S6. Concentrations (mg/L) of newly-identified and legacy perfluorinated chemicals in 3M	
aqueous film forming foam formulations manufactured from 1989-2001	L2
Table S7. The percent representativeness of quantitative and semi-quantitative analytes in a	
subsample (n = 5, \pm 95% CI) determined at a spiked concentration (Conc). ^a	L3
Figure S1. Gradient conditions used for analyte separation and elution during HPLC	L4
Figure S2. Total ion chromatogram indicating lack of retention of C4-10 perfluoroalkyl	
carboxylates due to breakthrough when the C18 analytical column was used without the Sil and	
NH ₂ guard columns	14

Chemicals. A mixture of perfluoroalkyl carboxylates [perfluoro-n-butanoic acid (PFBA), perfluoro-npentanoic acid (PFPeA), perfluoro-n-hexanoic acid (PFHxA), perfluoro-n-heptanoic acid (PFHpA), perfluoro-n-octanoic acid (PFOA), perfluoro-n-nonanoic acid (PFNA), perfluoro-n-decanoic acid (PFDA), perfluoro-n-undecanoic acid (PFUdA)] were purchased from Wellington Laboratories (Guelph, Ontario) in a methanol solvent at concentrations of 2 µg/mL each. A mixture of perfluoroalkyl sulfonates [(perfluoro-1-butanesulfonate (PFBS), perfluoro-1-hexanesulfonate (PFHxS), perfluoro-1heptanesulfonate (PFHpS), perfluoro-1-octanesulfonate (PFOS), and perfluoro-1-decanesulfonate (PFDS)] were purchased from Wellington Laboratories in a methanol solvent at concentrations from 1.77 μ g/mL to 1.93 μ g/mL. The perfluoroalkyl carboxylates and sulfonates all have purities of > 98%.The fluorotelomer sulfonates 1H,1H,2H,2H-perfluoro-1-hexanesulfonate (4-2 FtS), 1H,1H,2H,2H-perfluoro-1octanesulfonate (6-2 FtS), and 1H,1H,2H,2H-perfluoro-1-decanesulfonate (8-2 FtS) were generously donated by Chris Higgins at the Colorado School of Mines as individual solutions in methanol. The [perfluoro-1-hexane[¹⁸O₂]sulfonate ([¹⁸O₂]-PFHxS), internal standards perfluoro-1-[1,2,3,4-¹³C₄]octanesulfonate ([¹³C₄]-PFOS), perfluoro-n-[¹³C₄]butanoic acid ([¹³C₄]-PFBA) perfluoro-n-[1,2- $^{13}C_2$]hexanoic acid ([$^{13}C_2$]-PFHxA), perfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acid ([$^{13}C_4$]-PFOA), perfluoro-n- $[1,2,3,4,5^{-13}C_5]$ nonanoic acid ($[^{13}C_5]$ -PFNA), perfluoro-n- $[1,2^{-13}C_2]$ decanoic acid ($[^{13}C_2]$ -PFDA), perfluoron- $[1,2^{-13}C_2]$ undecanoic acid ($[^{13}C_2]$ -PFUdA), and perfluoro-n- $[1,2^{-13}C_2]$ dodecanoic acid ($[^{13}C_2]$ -PFDoA)] were purchased from Wellington Laboratories as a mixture in methanol at approximately 2 μ g/mL and are 94% to 99% isotopically pure.

Commercial source materials containing 6-2 FtSaB, 6-2 FtSaAm, 6-2 FtTAoS, 6-2 FtTHN⁺, 5-1-2 FtB, 7-1-2 FtB, 9-1-2 FtB, 5-3 FtB, 7-3 FtB, 9-3 FtB (Table S1) were provided by the Fire Fighting Foam Coalition (FFFC). HPLC grade methanol (> 99%) and ethyl acetate (> 99%), GC grade 2,2,2-trifluoroethanol (> 99%), and ammonium acetate (\cong 98%) were purchased from Sigma-Aldrich (Saint Louis, MO). B&J Brand[®] reagent water (> 99%) was purchased from VWR (Radnor, PA) and sodium chloride was acquired from Mallinckrodt Chemical (> 99%).

Groundwater Sampling Details for Sites A and B

<u>Site A.</u> Prior to groundwater collection, wells were purged using a peristaltic or bladder pump until water quality parameters (e.g. pH, specific conductivity, temperature, turbidity, oxidation/reduction

potential and dissolved oxygen) stabilized. The depth to the groundwater ranged from 0.50 m to 8.8 m. The tubing that came in contact with the sampled groundwater was fluoropolymer free, and new tubing was used for each sample location.

<u>Site B.</u> Groundwater samples were collected from this site following the U.S. EPA's Groundwater Sampling procedures.³⁰ The depth to the groundwater ranged from 6.7 m to 10 m. Groundwater was collected at each monitoring well using new silicone and polyethylene tubing. The monitoring wells were purged first with a peristaltic pump until stabilization of water quality parameters occurred.

Representative Subsampling. Preliminary data (not shown) revealed that area counts of perfluoroalkyl carboxylates (> C6) and perfluoroalkyl sulfonates (> C4) decreased by 50% to 100% over 6 hr while the analytes were in 3% MeOH/97% reagent water in 6mL glass autosampler vials. This loss was attributed to adsorption onto vials and stratification which indicated that samples that sat for a period of time were no longer homogeneous. As such, the ability of the subsampling protocol in obtaining a representative subsample needed to be determined.

To assess representative subsampling, a volume of 200 mL of blank groundwater in a 250 mL HDPE bottle was spiked to final concentrations of 400 ng/L for each quantitative analyte (**Figure 1 in main text**) and to final concentrations ranging from 84 ng/L to 1,300 ng/L for each semi-quantitative analyte (**Figure 1 in main text**). Representative subsampling was not assessed for qualitative analytes. The 200 mL groundwater sample was allowed to sit overnight to allow the PFCs to stratify,¹ agrigate,² adsorb to the container,³ or any other phenomena that would result in non-representative sub-sampling. The next day right before sub-sampling, the 200 mL sample was repeatedly sonicated in a Model 75HT heated (60 °C) sonication bath (VWR, Radnor, PA) then gently agitated and inverted. After sonication and agitation a 3 mL subsample was taken from approximately 3.0 cm to 3.5 cm below the meniscus and delivered to a 5 mL micro tube. The subsample was extracted and analyzed as outlined in the main text.

The representativeness of subsampling was defined as the percentage of the analyte concentration in the subsample over that of spiked concentration in the 200mL sample (n=5, \pm 95% Cl). The representativeness of the subsampling ranged from 76% \pm 2.8% (PFDoA) to 106% \pm 8.1% (4:2 FtS) for quantitative analytes (Table S7) and from 62% \pm 2.5% (6:2 FtTHN⁺) to 126% \pm 12% (5:1:2 FtB) for semi-quantitative analytes (Table S7). Overall, the protocol was deemed acceptable and the analyte concentrations in groundwater were not corrected for subsampling.

S3

Estimating Analyte Concentrations Assuming Equal Molar Response. Estimations of qualitative analyte concentrations are performed by assuming equal molar response to a related analyte. For example, for PFBSaAm, the response of PFBSaAm was ratioed to the response of [$^{13}C_4$]-PFOS (Table S3). Then, the response ratio applyed to PFOS's calibration curve (Table S3) to determine concentration. Finally, the concentration value is multiplied by ratio of the molecular weight of PFBSaAm over the molecular weight of PFOS (385/499) to correct for the difference in the number of molecules per unit weight of each analyte.

Absolute Extraction Efficiency. To determine the absolute efficiency of the extraction procedure, groundwater that gave no detectable analyte signal was *spiked first* with analytes to give final concentrations of between 50 and 450 ng/L then extracted (**pre-extraction spikes**). The pre-extraction spikes were compared to groundwater that was *extracted first* then spiked with analytes to equivalent concentrations (**post-extraction spikes**). Absolute extraction efficiency was defined as the ratio of pre-extraction spike area counts (n = 5) to post-extraction spike area counts (n = 5) multiplied by 100. The error about each measurement was compounded and reported as \pm 95 % CI. Only QI and Sq analytes were assessed for extraction efficiency. Internal standards were not added before extraction as they correct for incomplete extraction.

The absolute extraction efficiency ranged from 87% ± 8.3% to 99% ± 8.0% for Qn and Sq analytes (Table S4). It is not possible to make comparisons across methods of the extraction efficiencies for the newlyidentified PFCs because this is the first method developed for their analysis. Previous methods that report on fluorotelomer sulfonates in groundwater are based on direct-aqueous LVI and extraction efficiency is not reported because the samples were directly injected.⁴ However, the absolute extraction efficiencies reported here for perfluoroalkyl sulfonates (from 92% to 98%) and perfluoroalkyl carboxylates (from 91% to 98%) are an improvement over previous LLE-,⁵ C18 SPE-,⁶ and HLB SPE-⁷ based methods and are similar to the WAX SPE-based methods reported by Taniyasu and coworkers^{8,9} on which ISO method 25101 is based.¹⁰ The advantage micro-LLE has over SPE is that it requires less sample and generates less liquid and solid waste. For example, the method by Taniyasu and coworkers describe the extraction of 100 mL to 200 mL of sample using 20 mL of solvent.⁹

References

- 1. Ju, X.; Jin, Y.; Sasaki, K.; Saito, N., Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian coastal waters in China. *Environ Sci Technol* 2008, *42*, 3538-3542.
- 2. López-Fontán, J. L.; Sarmiento, F.; Schulz, P. C., The aggregation of sodium perfluorooctanoate in water. *Colloid Polym. Sci.* 2005, *283*, 862-871.
- 3. de Voogt, P.; Sáez, M., Analytical chemistry of perfluoroalkylated substances. *TrAC Trends in Analytical Chemistry* 2006, *25*, 326-342.
- 4. Schultz, M. M.; Barofsky, D. F.; Field, J. A., Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. *Environ Sci Technol* 2004, *38*, 1828-1835.
- 5. González-Barreiro, C.; Martínez-Carballo, E.; Sitka, A.; Scharf, S.; Gans, O., Method optimization for determination of selected perfluorinated alkylated substances in water samples. *Anal. Bioanal. Chem.* 2006, *386*, 2123-2132.
- 6. Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Okazawa, T.; Petrick, G.; Gamo, T., Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. *Environ Sci Technol* 2004, *38*, 5522-5528.
- 7. Ma, R.; Shih, K., Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. *Environmental Pollution* 2010, *158*, 1354-1362.
- 8. Taniyasu, S.; Kannan, K.; So, M. K.; Gulkowska, A.; Sinclair, E.; Okazawa, T.; Yamashita, N., Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. *J. Chromatogr. A* 2005, *1093*, 89-97.
- 9. Taniyasu, S.; Kannan, K.; Yeung, L. W. Y.; Kwok, K. Y.; Lam, P. K. S.; Yamashita, N., Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2-C4) in precipitation by liquid chromatography-tandem mass spectrometry: Comparison to patterns of long-chain perfluorinated acids (C5-C18). *Anal Chim Acta* 2008, *619*, 221-230.
- International Organization for Standardization, Water quality determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) – method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry. In ISO 2006; Vol. 25101.

Table S1. Descriptive names and acronyms of the newly-identified target analytes.

Compound Name of Newly-Identified Analyte	Acronym
2-methyl-2-(3-((1H,1H,2H,2H-perfluoro-1-hexyl)thio)propanamido)propane-1-sulfonate	4-2 FtTAoS
2-methyl-2-(3-((1H,1H,2H,2H-perfluoro-1-octyl)thio)propanamido)propane-1-sulfonate	6-2 FtTAoS
2-methyl-2-(3-((1H,1H,2H,2H-perfluoro-1-decyl)thio)propanamido)propane-1-sulfonate	8-2 FtTAoS
2-hydroxy-N,N,N-trimethyl-3-((1H,1H,2H,2H-perfluoro-1-octyl)thio)propan-1-aminium	6-2 FtTHN ⁺
N-(carboxymethyl)-N,N-dimethyl-3-(1H,1H,2H,2H-perfluoro-1-octanesulfonamido)propan-1-aminium	6-2 FtSaB
N-(carboxymethyl)-N,N-dimethyl-3-(1H,1H,2H,2H-perfluoro-1-decanesulfonamido)propan-1-aminium	8-2 FtSaB
N-(carboxymethyl)-N,N-dimethyl-3-(1H,1H,2H,2H-perfluoro-1-dodecanesulfonamido)propan-1-aminium	10-2 FtSaB
N-(carboxymethyl)-N,N-dimethyl-3-(1H,1H,2H,2H-perfluoro-1- tetradecanesulfonamido)propan-1-aminium	12-2 FtSaB
N-(carboxymethyl)-N,N-dimethyl-3-(1H,1H,2H,2H-perfluoro-1-octanesulfonamido)propan-1-aminium	6-2 FtSaAm
N-(carboxymethyl)-N,N-dimethyl-3-(1H,1H,2H,2H-perfluoro-1-decanesulfonamido)propan-1-aminium	8-2 FtSaAm
N-(carboxymethyl)-1H,1H,2H,2H,3H -N,N-dimethylperfluorooctan-1-aminium	5-1-2 FtB
N-(carboxymethyl)-1H,1H,2H,2H,3H -N,N-dimethylperfluorodecan-1-aminium	7-1-2 FtB
N-(carboxymethyl)-1H,1H,2H,2H,3H -N,N-dimethylperfluorododecan-1-aminium	9-1-2 FtB
N-(carboxymethyl)-1H,1H,2H,2H,3H,3H -N,N-dimethylperfluorooctan-1-aminium	5-3 FtB
N-(carboxymethyl)-1H,1H,2H,2H,3H,3H -N,N-dimethylperfluorodecan-1-aminium	7-3 FtB
N-(carboxymethyl)-1H,1H,2H,2H,3H,3H -N,N-dimethylperfluorododecan-1-aminium	9-3 FtB
	<u>-</u>
N,N-dimethyl-3-{[(trideca-perfluorobutyl)sulfonyl]amino}propan-1-aminium	PFBSaAm
N,N-dimethyl-3-{[(trideca-perfluoropentyl)sulfonyl]amino}propan-1-aminium	PFPeSaAm
N,N-dimethyl-3-{[(trideca-perfluorohexyl)sulfonyl]amino}propan-1-aminium	PFHxSaAm
N,N-dimethyl-3-{[(trideca-perfluoroheptyl)sulfonyl]amino}propan-1-aminium	PFHpSaAm
N,N-dimethyl-3-{[(trideca-perfluorooctyl)sulfonyl]amino}propan-1-aminium	PFOSaAm
3-(N-(2-carboxyethyl)- trideca-perfluorobutylsulfonamido)-N,N-dimethylpropan-1-aminium	PFBSaAmA
3-(N-(2-carboxyethyl)- trideca-perfluoropentylsulfonamido)-N,N-dimethylpropan-1-aminium	PFPeSaAmA
3-(N-(2-carboxyethyl)- trideca-perfluorohexylsulfonamido)-N,N-dimethylpropan-1-aminium	PFHxSaAmA
3-(N-(2-carboxyethyl)- trideca-perfluoroheptylsulfonamido)-N,N-dimethylpropan-1-aminium	PFHpSaAmA
3-(N-(2-carboxyethyl)- trideca-perfluorooctylsulfonamido)-N,N-dimethylpropan-1-aminium	PFOSaAmA

Table S2. Analyte precursor ions, product ions, and compound-dependant acquisition parameters.

	Fluorotelome	r Thioamido Sulf	onates			
Analyte	Precursor	Product Ion	CE ^a (V)	CV ^a (V)		
. ,	lon (m/z)	(m/z)	- ()	- ()		
1-2 FtTAOS	186	135	38	62		
4 21 (17,05	400	80	56	02		
6 2 E+TAOS	596	135	40	64		
0-2 FTTA03	580	80	64	04		
9 2 E+TA oS	C0C	135	44	70		
6-2 FTTA05	080	80	68	70		
	Fluorotelomer T	hio Hydroxy Am	imonium			
6 2 5 T 1 1 1 ⁺	106	79	44	- 4		
6-2 FtTHN	496	393	34	54		
	Fluorotelome	r Sulfonamido Be	etaines			
		58	38			
6-2 FtSaB	571	104	30	78		
		58	40			
8-2 FtSaB	671	104	32	80		
		58	44			
10-2 FtSaB	771	104	36	96		
		58	48			
12-2 FtSaB	871	104	38	100		
	Eluorotelom	er Sulfamido An	nines			
		E9	44	-		
6-2 FtSaAm	513	96	24	60		
		50	54			
8-2 FtSaAm	613	58	48	64		
		86	38			
	Fluorot	elomer Betaines				
5-1-2 FtB	432	58	38	60		
	\bigcirc	74	40			
7 1 2 E+D	522	58	40	72		
7-1-2 FLD	552	74	44	72		
		58	42			
9-1-3 FtB	632	74	52	/8		
/		58	38			
5-3 FtB	432	104	38	60		
		58	40			
7-3 FtB	514	104	42	72		
		104	12			
9-3 FtB	614	58	42	78		
	Fluerote	104	50			
	Fluorote		:s 			
4-2 FtS	327	81	20	42		
		307	19			
6-2 FtS	427	81	28	46		
		407	22	-		
8-2 FtS	527	81	32	50		
8-2 FtS	527	507	25	50		

^a CE (collision energy) and CV (cone voltage)

Perfluoroalkyl Sulfonamido Amines					
Analyte	Precursor Ion (m/z)	Product Ion (m/z)	CE ^a (V)	CV ^a (V)	
DERSalm	295	85	28	50	
FFDJdAIII	303	58	44	50	
DEDeSa Am	125	85	30	52	
FFFEJdAIII	455	58	44	52	
DEHvSa Am	185	85	33	5/	
FFIIXJAAIII	465	58	44	54	
DEHnSaAm	525	85	34	56	
РгпрзаАШ	222	58	45	50	
DEOCaAm	585	85	35	ГC	
PFOSdAm		58	45	50	
Perf	uoroalkyl Sulfo	namide Aminc	Carboxylate	S	
DEBSoAmA	457	85	28	10	
PEDSAAIIIA	457	70	50	40	
	507	85	30	52	
PFPESdAMA	507	70	50	52	
		85	33		
PFHxSaAmA	557	70	50	54	
	co .	85	34		
PFHxSaAmA	607	70	52	56	
	657	85	35	50	
PFOSaAmA	657	70	52	56	

Table S2 Cont. Analyte precursor ions, product ions, and compound-dependent acquisition parameters.

	Perfluoroalkyl Sulfonates				
Analyte	Precursor Ion (m/z)	Precursor Product CE ^a (V) Ion (m/z) Ion (m/z)		CV ^a (V)	
DEBS	200	80	32	50	
FFD3	299	99	26	50	
DEDaS	3/19	80	34	56	
FIFES	545	99	28	50	
DEHVS	300	80	36	58	
11173	555	99	28	50	
PEHnS	119	80	46	64	
inip5	-+-5	99	32	04	
DEOS	100	80	46	70	
FF03	455	99	34	70	
DENC	F 4 0	80	50	72	
PFINS	549	99	36	72	
DEDC	500	80	52	70	
PEDS	599	99	36	76	
	Perfluoro	oalkyl Carboxy	lates		
		169	8		
РЕВА	213	NA	NA	20	
	262	219	8	20	
РЕРЕА	263	NA	NA	20	
DELLA	242	269	8	20	
PFHXA	313	119	22	20	
	2.52	319	8		
РЕНРА	363	169	14	20	
DEOA	410	369	8	20	
PFUA	413	169	18	20	
DENIA	160	419	8	22	
FENA	403	169	18	22	
DEDA	512	469	10	22	
FIDA	515	269	18	22	
PELIDA	563	519	10	22	
HOUA	505	169	22	22	
PEDoA	613	569	10	22	
1100/1	015	169	24		
PFTrDA	663	619	12	24	
		169	26		
PFTeDA	713	669	12	24	
11100/1	,10	169	26		

^a CE (collision energy) and CV (cone voltage)

RangeOfKStandardRange (ng/L)Of PointsStandard(ng/L)PointsStandardPBSaAmCalculated Using PFOS Calibration $[1^3C_1]$ -PFHxA4:2 FtTAoSCalculated Using 6:2 FtTAoS Calibration $[1^3C_2]$ -PFHxAPFHxSaAmCalculated Using PFOS Calibration $[1^3C_4]$ -PFOS6:2 FtTAoSCalculated Using 6:2 FtTAoS Calibration $[1^3C_4]$ -PFOSPFHxSaAmCalculated Using PFOS Calibration $[1^3C_4]$ -PFOS6:2 FtTAN15 to 2,2505> 0.99 $[1^3C_4]$ -PFOSPFBSAAmCalculated Using PFOS Calibration $[1^3C_4]$ -PFOS6:2 FtSaB100 to 15,0006> 0.99 $[1^3C_4]$ -PFOSPFBSAAmCalculated Using PFOS Calibration $[1^3C_4]$ -PFOS10:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^3C_4]$ -PFOSPFBSAAmCalculated Using PFOS Calibration $[1^3C_4]$ -PFOS11:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^3C_4]$ -PFOSPFBSS to 10,0006> 0.99 $[1^3C_4]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaAmCalibration $[1^3C_4]$ -PFOSPFBSS to 10,0006> 0.99 $[1^3C_4]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaAmCalculated Using 6:2 FtSaAmCalculated Using PFOS Calibration $[1^3C_4]$ -PFOS9:12:2 FtB2 to 3,2005> 0.98 $[1^3C_4]$ -PFOSPFHSS to 10,0006> 0.99 $[1^3C_4]$ -PFOS9:12 FtB3 to 3,0005> 0.98 $[1^3C_4]$ -PFOSPFDSS to 10,0006> 0.99 $[1^3C_4]$		Calibration	Number	D ²	Internal		Calibration	Number	R ²	Internal
4:2 FtTAOSCalculated Using 6:2 FtTAOS Calibration $[1^{13}C_1]$ -PFHxAPFBSAAMCalculated Using PFOS Calibration $[1^{13}C_1]$ -PFOS6:2 FtTAOS10 to 1,5005> 0.99 $[1^{13}C_2]$ -PFHxAPFDSAAMCalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS6:2 FtTAOSCalculated Using 6:2 FtTAOS Calibration $[1^{13}C_4]$ -PFOSPFDSAAMCalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS6:2 FtSAB100 to 15,0006> 0.99 $[1^{13}C_4]$ -PFOSPFDSAAMCalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS8:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^{13}C_4]$ -PFOSPFBSAAMACalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS10:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^{13}C_4]$ -PFOSPFBSAAMACalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^{13}C_4]$ -PFOSPFBS S to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaAMCalculated Using 6:2 FtSaAMCalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS7:1:2 FtB40 to 6,0005> 0.98 $[1^{13}C_4]$ -PFOSPFDSS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[1^{13}C_4]$ -PFOSPFDSS to 10,0006> 0.99 $[1^{13}C_4]$ -PFDA9:1:2 FtB30 to 3,0005> 0.98 $[1^{13}C_4]$ -PFDAPFDAS to 10,0006> 0.99 $[1^{13}C_4]$ -PFDA9:1:1		(ng/L)	OT Points	ĸ	Standard		Range (ng/L)	of Points	11	Standard
4:2 FTAos Calculated Using 6:2 FTAos Calibration $[C_2]$ -PFHXA PFHxSAm Calculated Using PFOS Calibration $[^{13}C_1]$ -PFOS 6:2 FtTAos Calculated Using 6:2 FtTAoS Calibration $[^{13}C_1]$ -PFHXA PFHxSAm Calculated Using PFOS Calibration $[^{13}C_1]$ -PFOS 6:2 FtTAos Calculated Using 6:2 FtTAoS Calibration $[^{13}C_1]$ -PFOS PFDSAmA Calculated Using PFOS Calibration $[^{13}C_1]$ -PFOS 6:2 FtTAB 10 to 15,000 6 >0.99 $[^{13}C_1]$ -PFOS PFDSAmA Calculated Using PFOS Calibration $[^{13}C_1]$ -PFOS 8:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_1]$ -PFOS PFDSAmA Calculated Using PFOS Calibration $[^{13}C_1]$ -PFOS 10:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_1]$ -PFOS PFBSAmA Calculated Using PFOS Calibration $[^{13}C_1]$ -PFOS 12:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_1]$ -PFOS PFBS S to 10,000 6 >0.99 $[^{13}C_1]$ -PFOS 12:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_1]$ -PFOS PFBS S to 10,000 6 >0.99 $[^{13}C_1]$ -PFOS 12:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{$					(¹³ c) pru A	PFBSaAm	Calculated Usin	ng PFOS Cal	ibration	$\begin{bmatrix} {}^{1}C_{4} \end{bmatrix}$ -PFOS
6:2 FtTAos 10 to 1,500 5 > 0.99 $[^{13}C_2]$ -PFHxA PFHxSaAm Calculated Using PFOS Calibration $[^{13}C_2]$ -PFOS 8:2 FtTAos Calculated Using 6:2 FtTAos Calibration $[^{13}C_2]$ -PFOS PFDSAm Calculated Using PFOS Calibration $[^{13}C_2]$ -PFOS 6:2 FtTAN* 15 to 2,250 5 > 0.99 $[^{13}C_4]$ -PFOS PFDSAm Calculated Using PFOS Calibration $[^{13}C_4]$ -PFOS 6:2 FtSaB 100 to 15,000 6 > 0.99 $[^{13}C_4]$ -PFOS PFDSAmA Calculated Using PFOS Calibration $[^{13}C_4]$ -PFOS 8:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFDSAmA Calculated Using PFOS Calibration $[^{13}C_4]$ -PFOS 10:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFDSAmA Calculated Using PFOS Calibration $[^{13}C_4]$ -PFOS 12:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFDSAmA Calculated Using PFOS Calibration $[^{13}C_4]$ -PFOS 12:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFPS S to 10,000 6 >0.99 $[^{12}C_4]$ -PFOS 5:1:2 FtB 58 to 5,800 5 <td< td=""><td>4:2 FtTAoS</td><td>Calculated Usi</td><td>ng 6:2 FtTAoS</td><td>Calibration</td><td>[C₂]-PFHxA</td><td>PFPeSaAm</td><td>Calculated Usir</td><td>ng PFOS Cal</td><td>ibration</td><td>[⁻³C₄]-PFOS</td></td<>	4:2 FtTAoS	Calculated Usi	ng 6:2 FtTAoS	Calibration	[C ₂]-PFHxA	PFPeSaAm	Calculated Usir	ng PFOS Cal	ibration	[⁻³ C ₄]-PFOS
8:2 FtTAosCalculated Using 6:2 FtTAos Calibration $[^{13}C_1]$ -PFHxAPFDSAmCalculated Using PFOS Calibration $[^{13}C_1]$ -PFOS6:2 FtTAh*15 to 2,2505> 0.99 $[^{13}C_1]$ -PFOSPFDSAmCalculated Using PFOS Calibration $[^{13}C_1]$ -PFOS6:2 FtSaB100 to 15,0006> 0.99 $[^{13}C_1]$ -PFOSPFDSAmACalculated Using PFOS Calibration $[^{13}C_1]$ -PFOS8:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_1]$ -PFOSPFHpSAmACalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS10:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_1]$ -PFOSPFHpSAmACalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOSPFDSAmACalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOSPFPESCalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOSPFHSS to 10,0006>0.99 $[^{12}C_4]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOSPFHSS to 10,0006>0.99 $[^{12}C_4]$ -PFOS5:1:2 FtB58 to 5,8005> 0.98 $[^{13}C_4]$ -PFOSPFNSCalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS7:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFDSS to 10,0006> 0.99 $[^{12}C_4]$ -PFOS9:1:2 FtB	6:2 FtTAoS	10 to 1,500	5	> 0.99	[¹³ C ₂]-PFHxA	PFHxSaAm	Calculated Usir	ng PFOS Cal	ibration	[¹³ C ₄]-PFOS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8:2 FtTAoS	Calculated Usi	ng 6:2 FtTAoS	Calibration	[¹³ C ₂]-PFHxA	PFHpSaAm PFOSAm	Calculated Usir	ng PFOS Cal ng PFOS Cal	ibration ibration	[⁻³ C ₄]-PFOS [¹³ C₄]-PFOS
6:2 FtSaB100 to 15,0006> 0.99 $[1^{13}C_4]$ -PFOSPFPeSaAmACalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS8:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^{13}C_4]$ -PFOSPFHxSaAmACalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS10:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^{13}C_4]$ -PFOSPFBSAmACalculated Using PFOS Calibration $[1^{13}C_4]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[1^{13}C_4]$ -PFOSPFBSS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS6:2 FtSaAmCalculated Using 6:2 FtSaB Calibration $[1^{13}C_4]$ -PFOSPFBSS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration $[1^{13}C_4]$ -PFOSPFHxS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration $[1^{13}C_4]$ -PFOSPFHxS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS9:1:2 FtB5 to 5,8005> 0.98 $[1^{13}C_4]$ -PFOSPFBAS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[1^{13}C_4]$ -PFOSPFBAS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOS9:3 FtB15 to 1,5005> 0.98 $[1^{13}C_4]$ -PFBAPFEAS to 10,0006> 0.99 $[1^{13}C_4]$ -PFOA9:3 FtB27 to 8104> 0.98 $[1^{13}C_4]$ -PFBAPFHAS to 10,0006> 0.99 $[1^{13}C_4]$ -PFDA	6:2 FtTHN ⁺	15 to 2,250	5	> 0.99	[¹³ C ₄]-PFOS	PFBSaAmA	Calculated Usir	ng PFOS Cal	ibration	[¹³ C ₄]-PFOS
0.2 1 Calb100 to 15,0000 20.39 1 $C_{0,1}$ PrOSPFHXSAAMACalculated Using PFOS Calibration $[^{13}C_{1}$ -PFOS8:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_{4}]$ -PFOSPFHSCalculated Using PFOS Calibration $[^{13}C_{4}]$ -PFOS10:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_{4}]$ -PFOSPFBSS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_{4}]$ -PFOSPFBSS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS6:2 FtSaAmCalculated Using 6:2 FtSaB Calibration $[^{13}C_{4}]$ -PFOSPFBSS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaB Calibration $[^{13}C_{4}]$ -PFOSPFHXSS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS9:1:2 FtB58 to 5,8005> 0.98 $[^{13}C_{4}]$ -PFOSPFDSS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_{4}]$ -PFOSPFDAS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFBA9:3 FtB15 to 1,5005> 0.98 $[^{13}C_{4}]$ -PFBAPFHAS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFBA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_{4}]$ -PFBAPFHAS to 10,0006> 0.99 $[^{13}C_{4}]$ -PFDA9:3 FtB27 to 8104> 0.98 $[^{13}C_{4}]$ -PFBAPFDAS to 10,0006> 0.99 $[^{13$	6.2 EtSaB	100 to 15 000	6	> 0 00		PFPeSaAmA	Calculated Usin	ng PFOS Cal	ibration	[¹³ C ₄]-PFOS
8:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFHpSaAmA Calculated Using PFOS Calibration $[^{13}C_4]$ -PFOS 10:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFDS S to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOS 12:2 FtSaB Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFBS S to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOS 6:2 FtSaAm 240 to 24,000 5 > 0.98 $[^{13}C_4]$ -PFOS PFHpS S to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOS 8:2 FtSaAm Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFHpS S to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOS 8:2 FtSaAm Calculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOS PFHpS S to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOS 7:1:2 FtB 58 to 5,800 5 > 0.98 $[^{13}C_4]$ -PFOS PFDS S to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOS 9:1:2 FtB 32 to 3,200 5 > 0.98 $[^{13}C_4]$ -PFOS PFDA S to 10,000 6 > 0.99 $[^{13}C_4]$ -PFBA	0.211388	100 (0 15,000	0	20.99	[C4]-FTO3	PFHxSaAmA	Calculated Usir	ng PFOS Cal	ibration	[¹³ C ₄]-PFOS
10:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_{4}]$ -PFOSPFOSAmACalculated Using PFOS Calibration $[^{13}C_{4}]$ -PFOS12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_{4}]$ -PFOSPFBS5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS6:2 FtSaAm240 to 24,0005> 0.98 $[^{13}C_{4}]$ -PFOSPFHxS5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration $[^{13}C_{4}]$ -PFOSPFHxS5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS5:1:2 FtB58 to 5,8005> 0.98 $[^{13}C_{4}]$ -PFOSPFNSCalculated Using PFOS Calibration $[^{13}C_{4}]$ -PFOS7:1:2 FtB40 to 6,0005> 0.98 $[^{13}C_{4}]$ -PFOSPFNSCalculated Using PFOS Calibration $[^{13}C_{4}]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_{4}]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFOS9:1:2 FtB30 to 3,0005> 0.98 $[^{13}C_{4}]$ -PFOSPFPeA5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFBA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_{4}]$ -PFBAPFHA5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFDA9:3 FtB27 to 8104> 0.98 $[^{13}C_{4}]$ -PFBAPFHA5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFDA9:3 FtB27 to 8104> 0.98 $[^{13}C_{4}]$ -PFBAPFDA5 to 10,0006> 0.99 $[^{13}C_{4}]$ -PFDA<	8:2 FtSaB	Calculated Us	ing 6:2 FtSaB	Calibration	[¹³ C ₄]-PFOS	PFHpSaAmA	Calculated Usin	ng PFOS Cal	ibration	[¹³ C ₄]-PFOS
12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{13}C_4]$ -PFOSPFBS5 to 10,0006> 0.99 $[^{18}O_2]$ -PFHxS6:2 FtSaAm240 to 24,0005> 0.98 $[^{13}C_4]$ -PFOSPFPeSCalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration $[^{13}C_4]$ -PFOSPFHxS5 to 10,0006> 0.99 $[^{18}O_2]$ -PFHxS5:1:2 FtB58 to 5,8005> 0.98 $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS7:1:2 FtB40 to 6,0005> 0.98 $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA9:1:2 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFHxA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFHxA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFCA9:3 FtB27 to 8104> 0.98 $[^{13}C_4]$ -PFBAPFNA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFDA9:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFDA9:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:2 FtS5 to 750 <td>10:2 FtSaB</td> <td>Calculated Us</td> <td>ing 6:2 FtSaB</td> <td>Calibration</td> <td>[¹³C₄]-PFOS</td> <td>PFOSAmA</td> <td>Calculated Usin</td> <td>ng PFOS Cal</td> <td>ibration</td> <td>[¹³C₄]-PFOS</td>	10:2 FtSaB	Calculated Us	ing 6:2 FtSaB	Calibration	[¹³ C₄]-PFOS	PFOSAmA	Calculated Usin	ng PFOS Cal	ibration	[¹³ C ₄]-PFOS
12:2 FtSaBCalculated Using 6:2 FtSaB Calibration $[^{12}C_4]$ -PFOSPFPeSCalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS6:2 FtSaAm240 to 24,0005> 0.98 $[^{13}C_4]$ -PFOSPFHxS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration $[^{13}C_4]$ -PFOSPFHpS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS5:1:2 FtB58 to 5,8005> 0.98 $[^{13}C_4]$ -PFOSPFNSCalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS7:1:2 FtB40 to 6,0005> 0.98 $[^{13}C_4]$ -PFOSPFNSCalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFPeA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA9:1:2 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFPA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFHpA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFDA9:3 FtB27 to 8104> 0.98 $[^{13}C_4]$ -PFBAPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA4:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:2 FtS5 to 7505					-13	PFBS	5 to 10,000	6	> 0.99	[¹⁸ O ₂]-PFHxS
6:2 FtSaAm240 to 24,0005> 0.98 $[^{13}C_4]$ -PFOSPFHxS5 to 10,0006> 0.99 $[^{18}O_2]$ -PFHxS8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS5:1:2 FtB58 to 5,8005> 0.98 $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS7:1:2 FtB40 to 6,0005> 0.98 $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFPA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA5:3 FtB15 to 1,5005> 0.98 $[^{13}C_4]$ -PFBAPFPA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFHpA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA9:3 FtB27 to 8104> 0.98 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA4:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:2 Ft6a5 to 750	12:2 FtSaB	Calculated Us	ing 6:2 FtSaB	Calibration	tion [¹³ C ₄]-PFOS PFPeS		Calculated Using PFOS Calibration			[¹³ C ₄]-PFOS
8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration $[^{13}C_4]$ -PFOSPFHpS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS5:1:2 FtB58 to 5,8005> 0.98 $[^{13}C_4]$ -PFOSPFOS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS7:1:2 FtB40 to 6,0005> 0.98 $[^{13}C_4]$ -PFOSPFNSCalculated Using PFOS Calibration $[^{13}C_4]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFBA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA9:1:2 FtB15 to 1,5005> 0.98 $[^{13}C_4]$ -PFOSPFBA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA5:3 FtB15 to 1,5005> 0.98 $[^{13}C_4]$ -PFBAPFHxA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFHpA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA9:3 FtB27 to 8104> 0.98 $[^{13}C_4]$ -PFBAPFNA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFNA4:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0 for an end of the second sec	6:2 FtSaAm	240 to 24,000	5	> 0.98	[¹³ C ₄]-PFOS	PFHxS	5 to 10,000	6	> 0.99	[¹⁸ O ₂]-PFHxS
8:2 FtSaAmCalculated Using 6:2 FtSaAm Calibration[C_{4}]-PFOSPFOS5 to 10,0006> 0.99[$^{13}C_{4}$]-PFOS5:1:2 FtB58 to 5,8005> 0.98[$^{13}C_{4}$]-PFOSPFNSCalculated Using PFOS Calibration[$^{13}C_{4}$]-PFOS7:1:2 FtB40 to 6,0005> 0.98[$^{13}C_{4}$]-PFOSPFDS5 to 10,0006> 0.99[$^{13}C_{4}$]-PFOS9:1:2 FtB32 to 3,2005> 0.98[$^{13}C_{4}$]-PFOSPFBA5 to 10,0006> 0.99[$^{13}C_{4}$]-PFBA5:3 FtB15 to 1,5005> 0.98[$^{13}C_{4}$]-PFBAPFHxA5 to 10,0006> 0.99[$^{13}C_{4}$]-PFBA7:3 FtB30 to 3,0005> 0.98[$^{13}C_{4}$]-PFBAPFHpA5 to 10,0006> 0.99[$^{13}C_{4}$]-PFAA9:3 FtB27 to 8104> 0.98[$^{13}C_{4}$]-PFHXPFDA5 to 10,0006> 0.99[$^{13}C_{4}$]-PFDA4:2 FtS5 to 7505> 0.99[$^{18}O_{2}$]-PFHxSPFDA5 to 10,0006> 0.99[$^{13}C_{2}$]-PFDA6:2 FtS5 to 7505> 0.99[$^{18}O_{2}$]-PFHxSPFDoA5 to 10,0006> 0.99[$^{13}C_{2}$]-PFDAPFDA5 to 10,0006> 0.99[$^{13}C_{2}$]-PFDAPFDA5 to 10,0006> 0.99[$^{13}C_{2}$]-PFDA9:3 FtB2 to 7505> 0.99[$^{18}O_{2}$]-PFHxSPFDA5 to 10,0006> 0.99[$^{13}C_{2}$]-PFDA	0.2 5+6 - 4	Coloriate data		Caliburation		PFHpS	5 to 10,000	6	> 0.99	[¹³ C ₄]-PFOS
5:1:2 FtB 58 to 5,800 5 > 0.98 $[^{13}C_4]$ -PFOS PFNS Calculated Using PFOS Calibration $[^{13}C_4]$ -PFOS 7:1:2 FtB 40 to 6,000 5 > 0.98 $[^{13}C_4]$ -PFOS PFDS 5 to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOS 9:1:2 FtB 32 to 3,200 5 > 0.98 $[^{13}C_4]$ -PFOS PFBA 5 to 10,000 6 > 0.99 $[^{13}C_4]$ -PFBA 9:1:2 FtB 32 to 3,200 5 > 0.98 $[^{13}C_4]$ -PFOS PFPA 5 to 10,000 6 > 0.99 $[^{13}C_4]$ -PFBA 5:3 FtB 15 to 1,500 5 > 0.98 $[^{13}C_4]$ -PFBA PFHA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFHxA 7:3 FtB 30 to 3,000 5 > 0.98 $[^{13}C_4]$ -PFBA PFOA 5 to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOA 9:3 FtB 27 to 810 4 > 0.98 $[^{13}C_4]$ -PFBA PFNA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFNA 4:2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDA 5 to 10,000 6 > 0.99 <t< td=""><td>8:2 FtSaAm</td><td>Calculated Usin</td><td>ng 6:2 FtSaAm</td><td>Calibration</td><td>[C₄]-PFOS</td><td>PFOS</td><td>5 to 10,000</td><td>6</td><td>> 0.99</td><td>[¹³C₄]-PFOS</td></t<>	8:2 FtSaAm	Calculated Usin	ng 6:2 FtSaAm	Calibration	[C ₄]-PFOS	PFOS	5 to 10,000	6	> 0.99	[¹³ C ₄]-PFOS
7:1:2 FtB40 to 6,0005> 0.98 $[^{13}C_4]$ -PFOSPFDS5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOS9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFBA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA5:3 FtB15 to 1,5005> 0.98 $[^{13}C_4]$ -PFBAPFPeA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFHxA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA9:3 FtB27 to 8104> 0.98 $[^{13}C_4]$ -PFBAPFNA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFDA4:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5:1:2 FtB	58 to 5,800	5	> 0.98	[¹³ C ₄]-PFOS	PFNS	Calculated Usin	ng PFOS Cal	ibration	[¹³ C ₄]-PFOS
7.1.2 FtB40 to 0,0005> 0.98 $[^{12}C_4]$ -FFOSPFBA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFPeA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA5:3 FtB15 to 1,5005> 0.98 $[^{13}C_4]$ -PFBAPFHxA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA9:3 FtB27 to 8104> 0.98 $[^{13}C_4]$ -PFBAPFNA5 to 10,0006> 0.99 $[^{13}C_3]$ -PFDA4:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFUAA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:3 FtB5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:4 FtPA5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:5 FtPA5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA9:6 FtPA5 to 7505> 0.99 </td <td>7.1.2 E+D</td> <td>40 to 6 000</td> <td>F</td> <td>> 0.09</td> <td>1¹³C 1 DEOS</td> <td>PFDS</td> <td>5 to 10,000</td> <td>6</td> <td>> 0.99</td> <td>[¹³C₄]-PFOS</td>	7.1.2 E+D	40 to 6 000	F	> 0.09	1 ¹³ C 1 DEOS	PFDS	5 to 10,000	6	> 0.99	[¹³ C ₄]-PFOS
9:1:2 FtB32 to 3,2005> 0.98 $[^{13}C_4]$ -PFOSPFPeA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFBA5:3 FtB15 to 1,5005> 0.98 $[^{13}C_4]$ -PFBAPFHxA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFQA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA9:3 FtB27 to 8104> 0.98 $[^{13}C_4]$ -PFBAPFNA5 to 10,0006> 0.99 $[^{13}C_4]$ -PFOA4:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA0:2 FtS5 to 7505> 0.99	7.1.21(D	40 10 0,000	J	20.98	[C4]-FT O3	PFBA	5 to 10,000	6	> 0.99	[¹³ C ₄]-PFBA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9:1:2 FtB	32 to 3,200	5	> 0.98	[¹³ C ₄]-PFOS	PFPeA	5 to 10,000	6	> 0.99	[¹³ C ₄]-PFBA
7:3 FtB30 to 3,0005> 0.98 $[^{13}C_4]$ -PFBAPFHpA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA9:3 FtB27 to 8104> 0.98 $[^{13}C_4]$ -PFBAPFOA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFHxA4:2 FtS5 to 7505> 0.99 $[^{13}C_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDoA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDoA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFUdA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDoA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFUdA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDoA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFUdA6:2 FtS5 to 7505> 0.99 $[^{18}O_2]$ -PFHxSPFDoA5 to 10,0006> 0.99 $[^{13}C_2]$ -PFDoA	5:3 FtB	15 to 1.500	5	> 0.98	[¹³ C₄]-PFBA	PFHxA	5 to 10,000	6	> 0.99	[¹³ C ₂]-PFHxA
7:3 FtB 30 to 3,000 5 > 0.98 $[^{13}C_4]$ -PFBA PFOA 5 to 10,000 6 > 0.99 $[^{13}C_4]$ -PFOA 9:3 FtB 27 to 810 4 > 0.98 $[^{13}C_4]$ -PFBA PFOA 5 to 10,000 6 > 0.99 $[^{13}C_5]$ -PFNA 4:2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFDA 6:2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDoA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFDA 6:2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDoA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFDoA 9:0 2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDoA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFDoA		,	_		•13 • • • • • •	PFHpA	5 to 10,000	6	> 0.99	[¹³ C ₂]-PFHxA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7:3 FtB	30 to 3,000	5	> 0.98	[¹³ C ₄]-PFBA	PFOA	5 to 10,000	6	> 0.99	[¹³ C ₄]-PFOA
4:2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFDA 6:2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDoA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFUdA 6:2 FtS 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDoA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFDoA 0 0 0 0 0 5 5 to 750 5 > 0.99 $[^{18}O_2]$ -PFHxS PFDoA 5 to 10,000 6 > 0.99 $[^{13}C_2]$ -PFDoA	9:3 FtB	27 to 810	4	> 0.98	[¹³ C ₄]-PFBA	PFNA	5 to 10,000	6	> 0.99	[¹³ C ₅]-PFNA
4:2 Fts 5 to 750 5 > 0.99 $[O_2]$ -PFHXS PFUdA 5 to 10,000 6 > 0.99 $[{}^{13}C_2]$ -PFUdA 6:2 Fts 5 to 750 5 > 0.99 $[{}^{18}O_2]$ -PFHXS PFDoA 5 to 10,000 6 > 0.99 $[{}^{13}C_2]$ -PFUdA 6:2 Fts 5 to 750 5 > 0.99 $[{}^{18}O_2]$ -PFHxS PFDoA 5 to 10,000 6 > 0.99 $[{}^{13}C_2]$ -PFDoA	4.2 5+6	E to 750		> 0.00		PFDA	5 to 10,000	6	> 0.99	[¹³ C ₂]-PFDA
6:2 FtS 5 to 750 5 > 0.99 [$^{18}O_2$]-PFHxS PFDoA 5 to 10,000 6 > 0.99 [$^{13}C_2$]-PFDoA	4:2 FtS	5 to 750	5	> 0.99		PFUdA	5 to 10,000	6	> 0.99	[¹³ C ₂]-PFUdA
$PETrA = 5 to 10,000 = 6 > 0.99 I^{13}C_1 - PEDrA$	6:2 FtS	5 to 750	5	> 0.99	[¹⁸ O ₂]-PFHxS	PFDoA	5 to 10,000	6	> 0.99	[¹³ C ₂]-PFDoA
X7 Fts 5 to /50 5 50 99 120 - PEHxS 1 1 1 7 5 10 10,000 0 7 0.00 [02] 1 DOM	8·2 FtS	5 to 750	5	> 0 99	[¹⁸ O ₂]-PEHxS	PFTrA	5 to 10,000	6	> 0.99	[¹³ C ₂]-PFDoA
PFTeA 5 to 10,000 6 > 0.99 [¹³ C ₂]-PFDoA	0.2 1 13	5 (6 / 50	5	- 0.55	[02] [[]]	PFTeA	5 to 10,000	6	> 0.99	[¹³ C ₂]-PFDoA

Table S3. Calibration range, number of points, R², and internal standards used for each quantitative (Qn) and semi-quantitative (Sq) analyte and the corresponding calibration curve used for each qualitative (QI) analyte.

- 1 Table S4. Percent absolute extraction efficiency (% AEE) (n = 5, ± 95% CI) for quantitative (Qn) and
- 2 semi-quantitative (Sq) analytes.^a

Analyt	е	% AEE	% 95 CI	Anal	yte	% AEE	% 95 CI
6:2 FtTAoS	(Sq)	99	8.0	PFBS	(Qn)	92	3.9
6:2 FtTHN ⁺	(Sq)	95	6.8	PFHxS	(Qn)	98	8.2
				PFHpS	(Qn)	93	4.9
6:2 FtSaB	(Sq)	93	7.9	PFOS	(Qn)	92	3.4
6:2 FtSaAm	n (Sq)	97	15	PFDS	(Qn)	92	2.5
5:1:2 FtB	(Sq)	98	5.8	PFBA	(Qn)	93	7.0
7:1:2 FtB	(Sq)	90	5.5	PFPeA	(Qn)	93	2.4
9:1:2 FtB	(Sq)	93	5.7	PFHxA	(Qn)	94	5.2
				PFHpA	(Qn)	98	11
5:3 FtB	(Sq)	97	14	PFOA	(Qn)	96	4.5
7:3 FtB	(Sq)	88	10	PFNA	(Qn)	96	5.1
9:3 FtB	(Sq)	87	8.3	PFDA	(Qn)	95	5.8
				PFUdA	(Qn)	89	3.4
4:2 FtS	(Qn)	87	13	PFDoA	(Qn)	90	2.9
6:2 FtS	(Qn)	97	11	PFTrA	(Qn)	91	2.7
8:2 FtS	(Qn)	93	7.2	PFTeA	(Qn)	93	2.8

3

4 ^a Determined at concentrations of between 50 and 450 ng/L

6 Table S5. Concentrations (mg/L) of newly-identified PFAS and fluorotelomer sulfonates in

7 fluorotelomer-based aqueous film-forming foam formulations from different manufacturers.

				National	Buckeye Fire	Fire Service
	Ansul	Chemguard	Angus	Foam	Equipment	Plus
	2005	2010	2002	2003	2009	NR ^a
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
4:2 FtTAoS ^c	26	ND	25	ND	ND	ND
6:2 FtTAoS	6,100	11,000	4,900	ND	ND	ND
8:2 FtTAoS ^c	1,100	24	170	ND	ND	ND
4:2 FtS	ND	ND	ND	ND	ND	ND
6:2 FtS	ND	ND	ND	42	ND	53
8:2 FtS	ND	ND	ND	19	ND	56
$6:2 \text{ FtTHN}^+$	ND	ND	2,200	ND	ND	ND
6:2 FtSaB	ND	ND	ND	4,600	ND	4,800
8:2 FtSaB ^d	ND	ND	ND	540	ND	1,800
10:2 FtSaB ^d	ND	ND	ND	450	ND	830
12:2 FtSaB ^d	ND	ND	ND	210	ND	430
6:2 FtSaAm	ND	ND	ND	2,100	ND	3,400
8:2 FtSaAm ^e	ND	ND	ND	450	ND	720
5:1:2 FtB	ND	ND	ND	ND	2,000	ND
7:1:2 FtB	ND	ND	ND	ND	4,700	ND
9:1:2 FtB	ND	ND	ND	ND	1,900	ND
5:3 FtB	ND	ND	ND	ND	530	ND
7:3 FtB	ND	ND	ND	ND	610	ND
9:3 FtB	ND	ND	ND	ND	430	ND

8

9 ND- Not Detected (S/N<3)^a Not recorded (NR).^b Not Applicable (NA). Calculated assuming equal molar ratios to ^c 6:2 FtTAoS, ^d

10 6:2 FtSaB, and ^e 6:2 FtSaAm (see main text in SI). Perfluorinated chemicals (e.g. PFOS) were not detected.

- 12 Table S6. Concentrations (mg/L) of newly-identified and legacy perfluorinated chemicals in 3M
- 13 aqueous film forming foam formulations manufactured from 1989-2001.

	1989	1993a	1993b	1998	2001
	mg/L	mg/L	mg/L	mg/L	mg/L
PFBSaAm ^a	9	120 ± 2.0	180	140	110
PFPeSaAm ^a	8	140 ± 1.8	180	140	110
PFHxSaAm ^a	189	660 ± 8.1	850	743	690
PFHpSaAm	ND	12 ± 0.40	15	30	24
PFOSaAm	9.9	62 ± 1.1	75	67	37
PFBSaAmA ^a	ND	140 ± 3.1	120	110	150
PFPeSaAmA ^a	4	200 ± 6.3	170	140	130
PFHxSaAmA ^a	ND	930 ± 13	850	850	960
PFHpSaAmA	ND	17 ± 0.16	17	34	44
PFOSaAmA ^a	ND	72 ± 0.81	58	53	65
PFBS	380	220 ± 2.0	160	210	250
PFPeS	210	120 ± 1.5	80	90	120
PFHxS	1700	910 ± 14	760	850	900
PFHpS	410	120 ± 2.0	120	93	140
PFOS	15000	8000	9300	6700	7900
PFNS	160	53 ± 0.97	56	9	27
PFDS	102	51 ± 0.34	52	11	27
PFBA	37	24 ± 0.48	35	31	38
PFPeA	47	36 ± 0.14	52	43	48
PFHxA	170	99 ± 1.1	110	99	170
PFHpA	54	25 ± 0.28	22	26	37
PFOA	150	83 ± 1.3	93	86	170
PFNA	ND	ND	ND	ND	ND
PFDA	ND	ND	ND	ND	ND
PFUdA	ND	ND	ND	ND	ND
PFDoA	ND	ND	ND	ND	ND
PFTrA	ND	ND	ND	ND	ND
PFTeA	ND	ND	ND	ND	ND
PFS/PFA ^b	39	35	34	28	20
Legacy/Newly-Identified	84	4.1	4.3	3.6	4.2
PFOS/PFHxS	8.8	8.8	12	7.9	8.8

14

17 FtTAoS) were not detected.

¹⁵ ND = not detected (S/N<3) ^a Calculated assuming equal molar response to PFOS (see main text in SI). ^b Total concentrations of

¹⁶ perfluoroalkyl sulfonates (PFS)/ perfluoroalkyl carboxylates (PFA). Telomerization-based perfluorinated chemicals (e.g. 6:2

- 19 Table S7. The percent representativeness of quantitative and semi-quantitative analytes in a
- 20 subsample (n = 5, ± 95% CI) determined at a spiked concentration (Conc).^a

Analyte	Representativeness (%)	± 95 CI (%)	Spike Conc (ng/L)
6-2 FtTAoS	69	5	250
$6-2 \text{ FtTHN}^+$	62	2.5	250
6-2 FtSaB	124	9.6	930
6-2 FtSaAm	82	11	760
5-1-2 FtB	126	12	600
7-1-2 FtB	108	8.2	1250
9-1-2 FtB	88	6.6	340
5-3 FtB	100	7.8	150
7-3 FtB	89	11	314
9-3 FtB	74	7.7	84
4-2 FtS	106	8.1	400
6-2 FtS	102	4.9	400
8-2 FtS	99	8.1	400
PFBS	100	4.1	400
PFHxS	102	2.9	400
PFHpS	97	2.8	400
PFOS	101	1.5	400
PFDS	84	3.4	400
PFBA	96	1.6	400
PFPeA	99	3.4	400
PFHxA	96	1.5	400
PFHpA	95	3.5	400
PFOA	97	1.6	400
PFNA	95	4.7	400
PFDA	94	0.9	400
PFUdA	86	4.3	400
PFDoA	76	2.8	400
PFTrA	78	2.5	400
PFTeA	81	1.6	400

^a No standards were available for the C5 (PFPeS) and C9 (PFNS) sulfonates so they were excluded.

26

Figure S2. Total ion chromatogram indicating lack of retention of C4-10 perfluoroalkyl carboxylates
due to breakthrough when the C18 analytical column was used without the Sil and NH₂ guard

29 columns.

