Identifying Process Energy Efficiency Opportunities at Facilities

Minnesota Technical Assistance Program

University of Minnesota
Driven to Discover™
What to expect

• …integrating energy efficiency (E2) practices into pollution prevention (P2) planning practices
• …discuss their experience working with facilities to identify operational improvements and other opportunities to become more energy efficient
MnTAP at a glance

• A continuum of learning, adapting, and applying
 – On-site assistance
 • Site visits, interns, company teams
 • Demonstrations and research projects
 – Minnesota Materials Exchange
 – Communications and outreach
 • Web site and social media
 • Fact sheets and case studies
MnTAP at a glance

- Cost savings achieved

- Telephone and email assistance: 1%
- Site visits & Teams: 47%
- Intern projects: 52%
MnTAP: Connecting the dots

- Legislation to help business with new hazardous waste regulations
- Legislation to integrate pollution prevention into assistance
- Staff with relevant backgrounds
 - Adaptability
 - Immersion
 - Training

Minnesota Technical Assistance Program
www.mntap.umn.edu

University of Minnesota
Driven to Discover
MnTAP: connecting the dots

- Identify with the pulse of Minnesota business concerns
 - Process efficiency
 - Related process energy costs
 - Business priorities (quality, waste, and energy)
- Energy legislation obliges utilities to conserve
Integrating E2 practices

• What
 – P2 plans since early 1990s

• How
 – Step 1: Getting started
 – Step 2: Use a team
 – Step 3: Determine a baseline
 – Step 4: Determine and analyze alternatives

• Why
 – Step 5: Set objectives for implementation
Energy efficiency strategy

- Why we concentrate on *process* energy?
 - Familiarity and experience
 - Targeted: likely the major contribution to energy load at a facility
 - Partnerships with utilities
 - Helps to frame utility custom rebate opportunities
Why process energy?

- Energy efficiency is integral to traditional pollution prevention impacts
 - Process efficiency
 - Defects
 - Waste generation
- A productive outgrowth of multimedia cross-training
Why process energy?

• We tend to look at how equipment is used in the process at least as much as the equipment itself
Why process energy?

• Important to understand and analyze the entire process, not an individual, isolated piece of equipment
 – Why this equipment?
 – How is this related to that?
 – Why this speed, pressure, flow rate?
 – Where does this piping go?
 – If you improve this step, do you need to do that step?
Operations we concentrate on

- Department of Energy emphasis topics
 - Energy intensive
 - Aging yet robust infrastructure
 - Old technology
 - Built and installed when energy costs were not as important
 - Overlooked as overhead
 - High replacement cost
 - Complex systems
Operations we concentrate on

• Compressed air
 – In wide use across most industries
 – Inherently inefficient
 – Uncontrolled
 – Free
 – Misused and abused
Operations we concentrate on

• Process heat
 – Boilers, steam
 – Furnaces and ovens
 – Wasted heat

• Fans and pumps
 – Baghouses
 – Wastewater treatment plants

• Motors
 – Multiple applications
Needed expertise

• Industrial process refrigeration knowledge is currently a need
 – Interest group forming
 • Contact Jamey Evans
 • Golden Field Office (U.S. DOE)
 • Energy Efficiency & Renewable Energy
 • 303-275-4813
How we identify opportunities

• Analyze the process
 – Speeds
 – Pressures
 – Temperatures
 – Flows
 – Cycle times
How we identify opportunities

- Measure with data logging
 - Operational nuances
 - Record of performance
 - Before and after perspective

- Discover the best efficiency point
How we identify opportunities

- Overlay best practices
 - Heat recovery
 - Automation and process control
 - Predictive and preventive maintenance
 - Standardization
 - Close loops
Project: Researching energy conservation potential

- Initiated statewide roadmap for industrial energy efficiency
- Identified savings potential
 - 25 million therms
 - 271 million kWh

Sponsor: Minnesota Department of Commerce
Project: P2 and E2 in metal fabrication facilities

- 40 facilities affected
- Significant implementation
 - 11,500 lbs of waste
 - 4.6 million gallons of water
 - 1.3 million kWh
 - 4,000 therms
 - $90,000

Sponsor: U.S. EPA Region 5
Project: Energy efficiency program for Minnesota businesses

- 3 trainings, 24 assessments, 3 tech demos

- Implemented savings
 - 1,672,150 kWh
 - 158,100 therms
 - $197,000

- 2 - 2011 intern projects

- State-wide reach

Sponsor:
U.S. Department of Energy through Minnesota Department of Commerce
Impact: Meat processor

- DOE energy assessment
- Team with MnTAP assistance
- Implemented changes
 - 88,000 therms
 - 11 million gallons
 - $75,000
So- what makes sense

• …integrating energy efficiency (E2) practices into pollution prevention (P2) assistance
• …working to identify operational improvements leading to both waste reduction and energy efficiency
Comments/questions?

Thank you for your attention

Mick Jost
jostx003@umn.edu
612.624.4694