Assessing Methylmercury’s Health Impact on Piscivorous Wildlife by Use of Neurochemical Biomarkers

NIL BASU

Department of Environmental Health Sciences
School of Public Health, University of Michigan
Ann Arbor, MI

niladri@umich.edu
sitemaker.umich.edu/ecotoxicology.lab

A Simplified Mercury Cycle

*** all steps are extremely complex!!!
2004: % of waterways under advisory

Percentage of Lake Acres/River Miles under Advisory in 2004
2004 National Listing of Fish Advisories (www.epa.gov/waterscience/fish)

1993-2004: over-time trends increasing

Percentage of River Miles and Lake Acres Under Advisory (1993-2004)
2004 National Listing of Fish Advisories (www.epa.gov/waterscience/fish)
Number of Lake Acres Under Advisory for Various Pollutants in 2004
2004 National Listing of Fish Advisories (www.epa.gov/waterscience/fish)

What we know

>1ppm Hg
high levels

Increasing Biological Organization

Irreversible Damage

adverse effects

cell tissue organ individual population
What we do NOT know

< 1ppm Hg
relevant levels

> 1ppm Hg
high levels

???

Increasing Biological Organization →

MERCURY

BRAIN CHEMISTRY

NEUROTOXIC

Increasing Biological Organization →

Irreversible Damage

Irreversible Damage
Research Hypothesis

Neurochemical research can further our knowledge of the mechanisms and impacts of aquatic pollutants towards the health of humans, wildlife, and ecosystems.

Mercury \rightarrow BRAIN CHEMISTRY \rightarrow Neurotoxic

objective/quantitative method to assess early/subtle effects

model pathway – Cholinergic System

- well-studied neurochemical pathway
- sensitive to Hg (\textit{in vitro} and \textit{in vivo})

<table>
<thead>
<tr>
<th>Cholinergic disorders</th>
<th>Mercury poisoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>salivation</td>
<td>\checkmark</td>
</tr>
<tr>
<td>ataxia</td>
<td>\checkmark</td>
</tr>
<tr>
<td>loss of vision</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Alzheimer's relevant diseases</td>
<td>Minamata</td>
</tr>
</tbody>
</table>

Wess et al., 2005; Kobayashi, 1981
model organism – **Mink**

- high-trophic, fish-eating mammal common across North America & Europe
- Hg-related effects (lesions, behavior) similar to other wildlife and humans
- declines in wild mink populations associated with Hg pollution
- studied in nature and the laboratory

Basu et al., 2007; Aulerich et al., 1999

Integrative Approach

Does mercury affect the cholinergic receptor in mink?

- **IN VITRO STUDIES**
- **ANIMAL BIOASSAYS**
- **FIELD STUDIES**

Increasing Biological Organization →

Irreversible Damage
In vitro study – does Hg inhibit mAChR?

![Graph showing mACH Receptor Binding (% of Maximal) against log [HgCl] Molar](image1)

ECOLOGICALLY RELEVANT MERCURY

Field study – Hg α mAChR?

![Graph showing mACH Receptor Bmax (fmol/mg) against Total Hg (ppm)](image2)

Changes in neurochemistry

Adverse clinical outcomes

$r = 0.546, p < 0.001$

LOAEL1,2

1 Wren et al. 1987

2 Wobesor et al. 1976
Lab study – corroboration?

Laboratory Data
\[y = 129.8 \ln(x) + 1507.5 \]
\[R^2 = 0.175 \]

Field Data
\[y = 118.8 \ln(x) + 629.4 \]
\[R^2 = 0.259 \]

SIMILAR SLOPE-RESPONSE RELATIONSHIPS
Mid-Talk Summary

Mercury disrupts the cholinergic receptor in mink

- ecologically relevant levels disrupt brain neurochemistry
- changes are potentially of physiological and ecological significance
- continuum of effects is established

WHAT ABOUT OTHER SIGNALING PATHWAYS?
WHAT ABOUT OTHER FISH-EATING WILDLIFE?

Comparative Approach

Multiple neurochemical pathways affected by mercury in rodents

<table>
<thead>
<tr>
<th>Neurochemical Pathway</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholinergic</td>
<td>Cognitive/sensory</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Motor deficits</td>
</tr>
<tr>
<td>GABA</td>
<td>Inhibitory function</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Excitatory function</td>
</tr>
</tbody>
</table>
“In ecoepidemiology, the occurrence of an association in more than one species and species population is very strong evidence for causation.”

A Global “Ecosystem” Approach

Hg & mAChR: MINK

Total Hg (ppm)

mACh Receptor Bmax (fmol/mg)

Environ Toxicol Chem 24: 1444-1450
Hg & mAChR: COMMON LOON

Brain Total Hg (ppm, d.w.)

mACh receptor (fmol/mg)

r = 0.41, p < 0.01

Ecotoxicology 17: 93-101

Hg & mAChR: BALD EAGLE

Brain Total Hg (ppm, d.w.)

mACh receptor (fmol/mg)

r = 0.50, p < 0.001

Ecotoxicology 17: 93-101
Mercury disrupts cholinergic receptor in mink

Mercury disrupts the brain chemistry in mink

Mercury disrupts the brain chemistry in several fish-eating wildlife, lab animals (and humans?)

“So WHAT”???
Implications to Policy and Assessment #1

<table>
<thead>
<tr>
<th>Fish MeHg</th>
<th>Brain Hg</th>
<th>Fur Hg</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20</td>
<td>150</td>
<td>Death</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>60</td>
<td>Tissue lesions, reproductive impairment, behavioural changes, death</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>30</td>
<td>Biochemical (sub-clinical?)</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>15</td>
<td>Biochemical (adaptive?)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- neurochemical disruption at relevant levels
- changes of physiological/ecological concern

Implications to Policy and Assessment #2

- Hg
- Crude Oil
- Tot PCBs
- P&P effluent
- DE-71

NEUROTOXIC

- COGNITION, SENSES, MOTOR, H-P AXIS
A Neurochemical Fingerprint?

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Memory</th>
<th>Motor</th>
<th>Visual</th>
<th>Conduct Signals</th>
<th>Coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBDEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avian Wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implications to **Policy and Assessment #3**

- brain regions have specific functions
- semi-quantitative, objective measure?
Thanks!
Questions?

NIL BASU, PhD
Assistant Professor
Department of Environmental Health Sciences
School of Public Health, University of Michigan
Ann Arbor, MI

niladri@umich.edu
sitemaker.umich.edu/ecotoxicology.lab