STRATEGIES TO REDUCE ANIMAL TESTING IN US EPA’S HIGH PRODUCTION VOLUME CHEMICAL CHALLENGE SCREENING PROGRAM (AND BEYOND)

Chad B. Sandusky, Ph.D.
Physicians Committee for Responsible Medicine, Washington DC, USA
EPA’s High Production Volume (HPV) Program

- High production volume chemicals (>1,000,000 pounds per year)
- Assess existing hazard data
- Assess and fill data “gaps”
- No risk assessment (limited exposure considerations)
Animal Tests Required

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>GUIDELINE</th>
<th>ANIMALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute toxicity to fish</td>
<td>OECD 203</td>
<td>40-120</td>
</tr>
<tr>
<td>Acute lethality-oral</td>
<td>OECD 425</td>
<td>3-10</td>
</tr>
<tr>
<td>Repeat dose-28 or 90 days</td>
<td>OECD 407</td>
<td>40-65</td>
</tr>
<tr>
<td>Combined reproduction/developmental screen</td>
<td>OECD 408</td>
<td></td>
</tr>
<tr>
<td>Combined repeat dose/replication/developmental screen</td>
<td>OECD 421</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>OECD 422</td>
<td>675</td>
</tr>
</tbody>
</table>

TOTAL: 750 – 800; possibly over 1000 animals; hundreds of thousands of dollars
Examples of Current Animal Welfare Principles

- Use *in vitro* genotoxicity versus *in vivo* unless impossible
- No *repeat dose/reproductive* testing needed for closed system intermediates
- Maximize use of *existing data*
- Use *weight-of-evidence* to avoid “checklist toxicology”
- Use *SAR* to form chemical categories and extrapolate between members
Extended HPV Program

- Original program ended in 2005
- EHPV initiated in 2006
- PCRM has developed expanded Animal Welfare Guidelines based on experience from review of hundreds of HPV test plans
- Industry toxicologists and other scientists have worked with PCRM to identify opportunities to reduce animal testing and still meet the HPV data requirements
Specific Strategy Examples

1. Expanded Weight-of-Evidence Approach
 Commercial Hydroxyethylpiperazine (CHEP)

 ▪ Dermal reproductive/developmental study proposed
 ▪ (Q)SAR Modeling revealed low dermal absorption potential
 ▪ No systemic effects expected by the dermal route
 ▪ No testing conducted
 ▪ Pre-test in vitro percutaneous absorption (OECD 428) can also be used in this approach to decide whether systemic dermal toxicity testing is justified
Specific Strategy Examples

2. Expanded Weight-of-Evidence Approach
Isophthalonitrile

- No testing proposed

- Available developmental toxicity data not from traditional developmental study, but inferred from 28-day repeat dose and one-generation reproduction studies

- Scientifically sound approach accepted but more discussion of findings suggested
Specific Strategy Examples

3. Data from Analogs

Eicosenoic Acid, methyl ester, (Z)-

- Fatty Acid
 - Comments were submitted suggesting the use of data from other analogous substances
 - The sponsoring company cancelled proposed tests (which included all OECD mammalian endpoints) and used data from another fatty acid
Specific Strategy Examples

4. Rapid Hydrolysis
Triisopropyl borate (TIPB)

- Rapidly hydrolyzes to boric acid and isopropanol in aqueous environment
- Bench hydrolysis study at stomach acid pH (1.2) was proposed
- Rapid hydrolysis to well-studied products could be used to meet SIDS gaps
Specific Strategy Examples

5. Modeling based on common toxic constituent

Several Chemical Categories

- 6 chemical categories comprising several hundred chemicals
- All categories had common toxic constituent - PAH
- Modeling of toxicity across categories based on similar toxicity and level of PAH in mixtures
- Some limited animal testing may be needed to validate the model
- Ultimately may greatly reduce animal tests
Summary of Strategies

- Expand use of weight-of-evidence approach
- Use data from analogs
- Take hydrolysis or other chemical activity into account
- Model based on common toxic constituent
- Others:
 - Gases
 - Highly Reactive Materials
 - Acidic/Corrosive/Irritating Materials

- 45 chemical-specific examples and counting to reduce animal testing needed to meet HPV requirements