Stormwater Case Studies in Rhode Island

Igor Runge, Ph.D., P.H.
Senior Consultant
GZA GeoEnvironmental, Inc.

• What is Stormwater Runoff?
 ➢ Precipitation that runs off surfaces such as rooftops, paved surfaces, impervious areas, snow melt . . .
• **Why is stormwater an issue?**
 - Can contaminate and spread contamination
 - Sediment and erosion (migration)
 - Non-point source pollution
 - Temperature altering

• **Current Goal - Management**
 - Keep stormwater on site as much as practicable (detention, swales...)
 - Infiltrate
 - Manage contaminated sites
• **What are contaminated sites?**
 - Land that contains contaminants in, on, or under the surface
 - Potential hazards to health and the environment
 - Often from historical uses (industrial sites, dumping grounds…)
 - “Brownfield” land

• **RI Stormwater Standards (RIPDES Requirements)**
 - Low Impact Development (LID)
 - Groundwater recharge required
 - Water quality – treat runoff (WQV)
 - 85% TSS
 - 60% Pathogens
 - 30% TP (Fresh Water)
 - 30% TN (Salt Water)
 - Natural channel protection – address erosion
 - Overbank flood protection
• RI Stormwater Standards (RIPDES Requirements)
 ➢ Redevelopment/infill – 50% rule
 ➢ Pollution prevention measures (source controls)
 ➢ Land used with higher potential pollutant loads (gas stations, dumps...)
 ➢ Illicit discharge
 ➢ Construction erosion and sedimentation control
 ➢ Stormwater management system – Operation and Management Plan

• Management of contaminated sites
 ➢ All are unique
 ➢ Types of contaminants present (biodegradable? flammable?...)
 ➢ Differentiate between “clean” and “dirty” areas
 ➢ Minimize run-off (infiltrate)
 ➢ But, infiltration not possible at many contaminated sites
Case Study 1 – South Street Substation

- Located along the Providence River in Providence, RI
- Rebuild of existing substation (5+ acres); included:
 - Demolition of existing substation and control house
 - Construction of new building
 - Relocation of existing overhead transmission line below ground

Case Study 1 – South Street Substation

- RIDEM regulated site due to contamination from prior uses - brownfields
 - Excavate/remove certain contaminated soils
 - Install engineered cap (impermeable barrier) – selective?
• **Stormwater Management Challenging**
 - Infiltration questionable – soil contaminated with various constituents
 - Groundwater samples revealed only low-level impacts
 - Providence River in this area is impaired water (303d list)
 - Limited space

• **Stormwater Management Challenging**
 - Underground utilities everywhere
 - Limited stormwater allowed in existing municipal system
 - Impermeable liner may cause safety issues related to electrical system
• Final Plan
 ➢ Completed a Green/Yellow/Red assessment of infiltration suitability of soils
 ➢ Roof runoff treated separately (small infiltration basin in green area)
 ➢ Transformer area, properly located, allowed to infiltrate (yellow area)

• Final Plan
 ➢ Additional treatment provided by 2 infiltration trenches (to accommodate WQV) – to capture and treat as much runoff as practicable from paved surfaces
• **Lessons learned**
 - Constant communication with regulatory agencies (RIDEM, CRMC, NBC) important
 - Pre-application meeting a big benefit
 - Clearly articulate existing conditions and offer possible treatment alternatives – and then discuss

Case Study 2 - Energy Facility Infrastructure Modifications

• Work on a portion of a 42-acre parcel
• Located along the Providence River in Providence, RI
• Modifications to an existing facility
 - Construction of a new building
 - Building approximately 11 feet above existing ground level
 - Installation of over 400 piles
 - Considerable existing underground infrastructure
• RIDEM regulated site due to contamination
 - Metals, coal tar, organics
 - Work to comply with Soil Management Plan
• **Stormwater Management Challenges**
 - Considerable new impervious areas – access roadways
 - Infiltration not possible – entire site contaminated (and GW)
 - Impaired receiving water (metals, fecal coliforms, TN) – no infiltration
 - Limited space for management system
 - Sea level rise considerations

• **Final Plan**
 - Provide a subsurface conveyance system to capture all runoff
 - Route to a lined sediment forebay pre-treatment basin and lined sand filter
 - Discharge to impaired water required additional treatment or compensation
 - Metals, Bacteria, Phosphorus
 - Infiltrate 100% or treat and compensate 1:1
 - Nitrogen
 - Treat and compensate 1.5:1
 - Space limitations did not allow increasing sand filter size to treat larger WQV
 - WQV - 1 inch of runoff (1.2 inches precipitation)
 - Conducted dynamic analysis to demonstrate proposed system would capture and treat required WQV – size of filter did not have to increase
• Lessons learned
 ➢ Understand intent of requirements and design accordingly
 ➢ Pre-application meeting important
 ➢ Constant communication with all regulatory authorities