What Waste Site Cleanup Professionals Need to Know about Stormwater

Presentation to
NEWMOA – Danielson, CT

November 6, 2019

Stormwater 101 for Cleanup Professionals

- Urban hydrology
- Water quality impacts & improvement
- Infiltration capacity, considerations, limitations
- Guidance document: stormwater infiltration systems in Connecticut urban fills
- Who to connect with in the states
Hydrology

Natural Site
- 40% evapotranspiration
- 25% shallow infiltration
- 25% deep infiltration
- Natural Ground Cover

Developed Site
- 30% evapotranspiration
- 10% shallow infiltration
- 9% deep infiltration
- 75%-100% Impervious Cover

Water Quality Impacts

- Historical and new development
- Impaired coastal waters
 - Shellfish
 - Recreation
 - Fish/wildlife habitat
- Nonpoint sources
 - Stormwater runoff
 - Waterfowl
 - Marinas/boating

Source: UConn CLEAR
Water Quality Impacts

TMDLs

• About 40% of the nation’s lakes, ponds, rivers, wetlands and coastal waters are listed as “impaired waters” because of point discharges (MADEP)
• Focus shift to nonpoint sources (urban and agricultural surface runoff) and subsurface sources (septic systems)
• Pollutant loads considered on a watershed scale
• Goal is to meet Water Quality Standards

Federal requirement (Clean Water Act): if a water body doesn’t meet State WQS for a pollutant a TMDL must be developed for that pollutant Watershed scale
Water Quality Improvements

Treatment:
- Physically adsorb onto a surface
- Biologically absorb into tissue
- Chemical alteration (to a less harmful state)
- Removal from system

Typical treatment targets:
- Bacteria
- Total suspended solids (TSS)
- Heavy metals
- Nutrients primarily nitrogen & phosphorus

Pollutant Removal Strategies

Pollutant removal tools:
- EPA performance and optimization tools
- University of New Hampshire
- Chesapeake Conservancy
- Interstate Technology Regulatory Council (ITRC)

https://stormwater-1.itrcweb.org/
ITRC BMP Screening Tool

ITRC Best Management Practices Screening Tool

- Pollutants of concern, environmental conditions, site restrictions, other factors

Pick pollutants – start with TSS
ITRC BMP Screening Tool

Pick pollutants – add total dissolved

ITRC BMP Screening Tool

Site condition – contaminated soils in installation area
Infiltration considerations

Subsurface conditions
- Soil type and permeability
- Bedrock
- Groundwater depth
- Presence of Contaminated soil

Infiltration capacity

- Good CT guidance in on-site WW manual *

Field analysis:
- Undisturbed soil sampling
- Pit bailing, auger hole bailing, slug test
- Permeameter
- Infilometer

Laboratory:
- Falling head, constant head tests

* CTDEEP subsurface wastewater disposal design manual 2006
Infiltration capacity

Determine infiltration capacity of management area:

- Empirical methods or numeric modeling
- Modeling based on Darcy’s Law
 - Energy gradient
 - Hydraulic conductivity
 - Surface area
- Impacts of climate change
 - Infiltration capacity is what it is
 - Infiltration systems will see more frequent exposure to runoff
 - Overflow to gravity system!

Considerations at contaminated sites

Current stormwater management practice is green infrastructure and low impact development, which rely on infiltration and groundwater recharge.

- Potential to mobilize contaminants and impact groundwater
- Can be overcome within regulatory framework
- Apply to new projects, redevelopment projects, retrofits of existing drainage systems
Space Implications

Factors include:

- Watershed / drainage area
- Precipitation event managed (WQV, design storm)
- Site constraints (depth to seasonal high GW, bedrock)
- Discharge / overflow location and constraints
- Soil permeability

<table>
<thead>
<tr>
<th>Site</th>
<th>Storm Managed</th>
<th>Structure Depth</th>
<th>BMP Footprint</th>
<th>Site Footprint</th>
<th>% of Site Footprint</th>
<th>K (in/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darien/train station (CT)</td>
<td>100 yr</td>
<td>48"</td>
<td>10,538</td>
<td>66,500</td>
<td>15%</td>
<td>1.0</td>
</tr>
<tr>
<td>Farnam New Haven (CT)</td>
<td>100 yr</td>
<td>12"</td>
<td>6,032</td>
<td>213,300</td>
<td>3%</td>
<td>4.0</td>
</tr>
<tr>
<td>Duncaster Bloomfield (CT)</td>
<td>WQV</td>
<td>24"</td>
<td>2,500</td>
<td>23,900</td>
<td>10%</td>
<td>5.0</td>
</tr>
<tr>
<td>Lattins Cove Boat Ramp (CT)</td>
<td>WQV</td>
<td>8"</td>
<td>2,680</td>
<td>96,000</td>
<td>3%</td>
<td>unknown</td>
</tr>
<tr>
<td>Lexington Fire</td>
<td>12" - 24"</td>
<td></td>
<td></td>
<td></td>
<td>15%</td>
<td>Low/fill matls.</td>
</tr>
</tbody>
</table>
Guidance Document – Infiltration in Urban Fill

Town of Darien, CT project funded by CIRCA

Project Setting
Guidance document – infiltration in urban fill

Setting
➢ Policies and regulations regarding stormwater quality, Low Impact Development practices, stormwater management and work in urban soils are in separate documents and permit programs
Guidance document – infiltration in urban fill

Purpose and Goals

➢ Develop a Design Guidance Checklist that summarizes and guides project planners and designers through the regulatory requirements
➢ Define tasks needed to evaluate and design stormwater management systems in urban areas that may contain urban fill
➢ Checklist is CT-centric but can be adapted for any state

Guidance document – infiltration in urban fill

1. Introduction
2. Purpose
3. Limitations
4. Design Guidance for Stormwater Infiltration at Sites Characterized by Urban Fill
5. Design Considerations
6. Environmental Considerations
Guidance document – infiltration in urban fill

1. Introduction
 • Soils affected by history of development are sometimes referred to as urban soils or urban fill
 • Burning of wood and coal, industrial activity byproducts - heavy metals, PAHs
 • LID and GI address stormwater quality, groundwater recharge and flood resilience objectives. They can also mobilize contaminants and impact groundwater
 • Permit programs – municipal, state (MS4 and waste management)

Guidance document – infiltration in urban fill

2. Purpose
 • Provide guidance for project planners and designers on the siting and design of stormwater infiltration systems in urban settings with historical urban fill. Examples include bioretention basins, rain gardens, water quality swales, subsurface infiltration chambers and trenches
 • Guide project planners and designers through the appropriate requirements of applicable regulatory practices and policies
 • Improve consistency in planning, siting and design of LID and green infrastructure to meet water quality, flood resilience, and other objectives
Guidance document – infiltration in urban fill

2. Purpose

• Provide guidance for project planners and designers on the siting and design of stormwater infiltration systems in urban settings with historical urban fill. Examples include:
 – bioretention basins
 – rain gardens
 – water quality swales
 – subsurface infiltration chambers and trenches

• Improve consistency in planning, siting and design of LID and green infrastructure to meet water quality, flood resilience, and other objectives

Guidance document – infiltration in urban fill

• Raise awareness of the potential to encounter urban fill in areas of proposed stormwater management

• Highlight the critical questions that should be asked to inform the design of an acceptable stormwater management system

• Identify the regulatory requirements that could apply to the design and construction of stormwater infiltration systems in urban fill
Guidance document – infiltration in urban fill

3. Limitations of design guidance
 • Users of this checklist must be knowledgeable and proficient in land use and planning, and in particular:
 – Design and construction of stormwater management systems
 – Characterization of contaminated soils and groundwater
 – Construction cost estimating
 – Management of contaminated soils and groundwater
 – Familiarity with applicable local, state, and federal regulations

Guidance document – infiltration in urban fill

4. Design Guidance
 • Identifying urban fill areas
 – Walk through
 – Topographic maps, NRCS maps
 – Test pits or geotech borings
 – Collect & analyze soil samples, evaluate data vs. regulations
Guidance document – infiltration in urban fill

Design approach factors
- Level of contamination
- Land uses
- Classification / potential use of groundwater

Retention

- **Design approaches**
 - "Store runoff on-site" for water quality event (1” rainfall typically)
 - Used in land use activities with potential for spills or high pollutant loads
 - Structures, filter with liner
 - **Overflow - Discharge to gravity system**
 - Examples
 - Tank
 - Oversized drainage pipe
 - Leaching system with lined sides and bottom

Treatment

- **Design approaches**
 - Removal of sediment, floatables, and nutrients that may clog the system or "mask" soils and reduce infiltration over time
 - Treated runoff infiltrates into soil
 - **Overflow - Discharge to gravity system**
 - Examples
 - Infiltration basin
 - Surface Bioretention
 - Permeable pavement
 - Water quality swale
Guidance document – infiltration in urban fill

Design considerations

Constructability

- Space: planimetric, disturbance footprint

Guidance document – infiltration in urban fill

Design considerations

Constructability

- Slopes: potential instability of saturated soil
- Physical barriers: property lines, adjacent buildings, utilities, etc.
- Depth to seasonal high groundwater
- Soil type

Land use / pretreatment needs

- Stormwater quality
- Potential for spill or high pollutant load
Design Considerations

Capacity needs
- Runoff water quality volume
- High or low flow rates
- Bypass high rates to gravity system or watercourse

Design Considerations

Separation distances
- Potable wells / public water supply (75’)
- Septic systems (75’)
- Foundation drains (25’ / 100’)
- Water and sewer mains
- Other utility trenches
- Property lines
- Easement lines
Design considerations

Stormwater Quality Considerations

• Design flow rates / water quality volume, peak flow management
• TSS removal
• Depth to groundwater (3’ minimum separation)
• Groundwater recharge – beware of tables and published recharge / infiltration rates!

<table>
<thead>
<tr>
<th>Hydrologic Group</th>
<th>Volume to Recharge x Total Impervious Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.60 inches of runoff</td>
</tr>
<tr>
<td>B</td>
<td>0.35 inches of runoff</td>
</tr>
<tr>
<td>C</td>
<td>0.25 inches of runoff</td>
</tr>
<tr>
<td>D</td>
<td>0.10 inches of runoff</td>
</tr>
</tbody>
</table>

Design considerations

Typical bioswale cross section
Design considerations

Design

Stormwater runoff model
- 1D (HydroCAD), 2D (PCSWMM)
- Calibration if possible

Design capacity
- On-site vs. off-site watershed contributions
- Design return frequency (high)
- Overflow to gravity outlet (low frequency storm)

Groundwater recharge
- Stormwater manual requirements
- Soil infiltration capacity (determine in-situ or in lab)

System footprint, constructability, other factors

Who to contact

Local stormwater authority – DPWs, health depts

State stormwater authority and permitting - CTDEEP

CTDEEP waste, groundwater, subsurface wastewater programs
Questions

My contact Information:
Phil Forzley, PE
Fuss & O’Neill, Inc.
pforzley@fando.com
860.748.1367