PFAS: Assessing Laboratory Data Quality

NEWMOA Webinar
April 4, 2019

Nancy C. Rothman, Ph.D.
New Environmental Horizons, Inc.
34 Pheasant Run Drive, Skillman, NJ 08558
Phone: 908-874-5686
e-mail: nrothman_neh@comcast.net
web site: www.neh-inc.com

Poly- or perfluorinated alkyl substances (PFAS) or Perfluorocarbons (PFC) – General term for all chemicals formed from carbon chains with fluorine substituting some/all of the hydrogens on the chain
• C-F bond very strong
• Unique properties – repel water and oil, surfactant, stable
• Diverse and complex chemistries based on product use
• Precursors FTS (Fluorotelomer Sulfonate), PAP (Polyfluorinated Alkyl Phosphate Esters), PFPA (Polyfluorinated phosphonic acid), FTOH (Fluorotelomer alcohol) can all degrade to Carboxylates and Sulfonates
Environmental Fate of PFAS

Analysis of PFAS

USEPA Method 537.1 (version 1.0, 2018)
- Only applicable to Drinking Water samples
- No Recovery Correction
- Analyte list limited - 18 PFAS (14 PFAS required by Method 537 + 4 added compounds)
- New DW method (Summer 2019) - 25 PFAS includes 11 “short chain” compounds

ASTM D7979-17 & ASTM D7968 - 17a (2017)
- Non-Drinking water Aqueous & Soils
- No Recovery Correction
- 25 PFAS
Analysis of PFAS

SW-846 Method 8327 (Summer 2019)
- Direct Injection
- Non-Drinking Water Aqueous
- 24 PFAS
- No Recovery Correction

SW-846 Method 8328 (late 2019)
- Solid Phase Extraction/Isotope Dilution (SPE-ID)
- Non-Drinking Water Aqueous & Solids
- 24+ PFAS
- Recovery Correction

Lab-Specific Methods
- Modifications to the above methods
- Vary lab-to-lab

Analysis of PFAS

Total Oxidizable Precursors (TOP)
- Comparison of LCS-MS/MS results for sample pre- and post-oxidation
- Useful for evaluating Precursor potential – may be biased low

Proton Induced Gamma-ray Emission (PIGE)
- Non-destructive technique for Total Fluorine

Adsorbable Organic Fluorine /Combustible Ion Chromatography (AOF/CIC)
- Destructive technique for Total Fluorine
Data Quality Using PARCCS

Precision
- Variability, reproducibility
- QC = replicates

Accuracy
- bias from “true”
- QC = blanks, spikes, calibration

Representativeness
- Data point vs. population
- QC = field duplicates, sample locations

Comparability
- Temporal and methodological consistency
- field vs. lab data

Completeness
- amount of data planned vs. usable data collected

Sensitivity
- Quantitation Limits
- Regulatory Standards
Types of Data Reports

1. Summary Data Package - **Recommended**
 - Narrative explaining Method of Analysis and any issues with sample receipt and analysis
 - Sample Results (including FB and FD) + Surrogate recoveries
 - QC results (MB, LCS, MS, & MSD or FD)
 - Executed Chain-of-Custody

2. Full Deliverable – all of above + raw data

3. Result Forms/Tables only – **Not Recommended**

Method Reference

- Project ID: 6634
- Sample ID: Sample 1 DW
- Sampled: 2/10/2019
- Extracted: 2/23/2019
- Analyzed: 3/5/2019
- Dilution Factor: 1
- Sample Amount: 245 mL
- Matrix: DW
- % Solids: NA

Units

CONCENTRATION UNITS: ng/L

Analyte List and Results with Data Qualifiers

- **Compound**
- **Result**
- **Acceptance Criteria**
 - **Key:**
 - U - Analyzed but not found.

Surrogate Recovery Data

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>% Recovery</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C2-PFHxA</td>
<td>95%</td>
<td>70-130%</td>
</tr>
<tr>
<td>13C2-PFDoA</td>
<td>80%</td>
<td>70-130%</td>
</tr>
<tr>
<td>J5s-NFOSAA</td>
<td>85%</td>
<td>70-130%</td>
</tr>
<tr>
<td>13C2-HFPO-DA</td>
<td>92%</td>
<td>70-130%</td>
</tr>
</tbody>
</table>
Specific Laboratory QA/QC For PFAS

• Sample preservation
• Sample Holding Times / Analytical Batches (≤ 20 samples)
• QC Samples required for each Analytical Batch:
 – Laboratory Reagent Blank (LRB) / Method Blank (MB)
 – Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS)
 – Laboratory Fortified Sample Matrix (LFSM) / Matrix Spike (MS)
 – Laboratory Fortified Matrix Sample Duplicate (LFSMD) or Field Duplicate (FD)
• Surrogates added to all samples & QC prior to extraction
• Internal Standards added to all extracts prior to analysis

Holding Time

• Check sample data sheet for HT acceptance

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampled</td>
<td>Extracted</td>
<td>Analyzed</td>
</tr>
<tr>
<td>2/20/19</td>
<td>2/23/19</td>
<td>3/5/19</td>
</tr>
</tbody>
</table>

Date extracted - Date sampled ≤ Preparation Holding Time
Method 537.1 preparation HT = 14 days;
2/23/19 - 2/20/19 = 3 days:
HT OK

Date analyzed - Date extracted ≤ Analytical Holding Time
Method 537.1 analytical HT = 28 days;
3/5/19 - 2/23/19 = 11 days:
HT OK
Preservation & Holding Time

- Method 537.1 requires addition of **Trizma**
 - Acts as a buffer and removes free-chlorine from Drinking Water samples
- Samples shipped cold (< 10 °C) to lab
- If Preservation not correct or Holding Time (HT) exceeded – potential for loss of PFAS content and false negative results

If Preservation and/or HT a problem, all results are considered uncertain with possible low bias

Detection and Reporting Limits

- **Instrument Detection Limit** (IDL) is the “Best” the instrument can detect
- **Method Detection Limit** (MDL or LOD) is the “Best” the instrument can detect by the method - statistically
- **Quantitation Limit** (QL/RL/LOQ) is the “Practical” level of accurate quantitation – Must be supported by calibration curve and should be < Project Level of Concern
Recovery Surrogates vs. Isotope Dilution Surrogates

Similarities:
Added directly to the sample prior to preparation and analysis

Differences:

Recovery Surrogates
- Surrogates used to *infer* accuracy of preparation and analysis
- Internal Standards spiked prior to analysis to quantitate surrogates and target compounds

Isotope Dilution Surrogates
- Labeled Isotopes of most target compound (e.g., 13C4-PFOA, 13C4-PFOS) used for quantitation
- Loss in Isotope mirrors loss of Unlabeled compound = data are *Recovery-Corrected*
Recovery Surrogates vs. Isotope Dilution Surrogates

Non-Isotope Dilution Methods

\[
\text{Compound Concentration} \equiv \frac{\text{Compound Response}}{\text{Internal Standard Response}}
\]

\[
\text{Compounds} = \text{Target PFAS}
\]

\[
\text{Rec. Surrogate} = \text{Recovery Surrogate}
\]

Isotope Dilution Methods

\[
\text{Compound Concentration} \equiv \frac{\text{Compound Response}}{\text{ID Surrogate Response}}
\]

\[
\text{Compounds} = \text{Target PFAS}
\]

\[
\text{ID Surrogate} = \text{Isotope Dilution}
\]

Surrogate Recovery Problems

- Surrogate recovery below criteria: potential low bias in data
 - Due to lab error or matrix effects
- Surrogate recovery above criteria: potential high bias
 - Due to interferences or instrument issues
- **Non-Isotope Dilution Analysis** = Detected and non-detected results may be uncertain
- **Isotope Dilution Analysis** = Only compound(s) associated with Isotope affected. Uncertain whether data are biased at all since results are recovery corrected
Expanded Analyte List with 4 Precursors at the end of the list

Surrogates (Isotopes) Data

Low 13C9PFNA only impacts PFNA result

Blank Samples

- Method Blank (MB) – lab-generated
 - Evaluates whether contamination may have been introduced by the laboratory
 - Associated with all samples in the Analytical Batch

- Field Blank (FB) / Equipment Blank (EB)
 - Evaluates whether contamination may have been introduced during sample collection and transport
 - Associated with specific field sample results

Compare Blank results to Sample results to evaluate potential lab/field contamination that may cause high bias or false positives in field sample data
Laboratory Control Sample (LCS)

- LCS = Method Blank that is spiked with all the PFAS compounds of interest
- LCS Recoveries = within acceptance criteria as specified in Method or project QAPP
- LCS recovery outside criteria = impact for affected compound for all samples in the Analytical Batch

Compare LCS results to Method / QAPP acceptance criteria to evaluate potential accuracy / bias in associated Sample data; may qualify results

Example LCS Evaluation

<table>
<thead>
<tr>
<th>Compound</th>
<th>%Recovery</th>
<th>Acceptance Criteria</th>
<th>Issue?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>75%</td>
<td>70-130%</td>
<td>No</td>
</tr>
<tr>
<td>PFOS</td>
<td>80%</td>
<td>70-130%</td>
<td>No</td>
</tr>
<tr>
<td>PFNA</td>
<td>60%</td>
<td>70-130%</td>
<td>PFNA in all associated samples may be biased low</td>
</tr>
<tr>
<td>FOSA</td>
<td>145%</td>
<td>70-130%</td>
<td>Non-detects acceptable but detected results may be biased high</td>
</tr>
</tbody>
</table>
Matrix Spike Samples (MS/MSD)

- MS/MSD = Sample aliquots spiked with all PFAS compounds of interest
- MS/MSD Recoveries = within acceptance criteria as specified in Method or project QAPP
- If MS/MSD recovery outside criteria = impact for affected compound in the **unspiked sample**
- If MS/MSD RPD outside criteria = results for **unspiked sample** uncertain

Compare MS/MSD results to Unspiked Sample to evaluate potential accuracy / bias and precision issues in Unspiked Sample data; may qualify results

Example MS/MSD Evaluation

<table>
<thead>
<tr>
<th>Cpd</th>
<th>Unspiked Sample (ng/L)</th>
<th>MS %Rec</th>
<th>MSD %Rec</th>
<th>RPD</th>
<th>Acceptance Criteria Recovery/RPD</th>
<th>Issue?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>5 U</td>
<td>75%</td>
<td>80%</td>
<td>6.4%</td>
<td>70-130% / 30%</td>
<td>No</td>
</tr>
<tr>
<td>PFOS</td>
<td>5 U</td>
<td>71%</td>
<td>128%</td>
<td>57.3%</td>
<td>70-130% / 30%</td>
<td>Imprecision may indicate result is non-representative and uncertain</td>
</tr>
<tr>
<td>PFNA</td>
<td>8</td>
<td>60%</td>
<td>57%</td>
<td>5.1%</td>
<td>70-130% / 30%</td>
<td>PFNA in unspiked sample may be biased low</td>
</tr>
<tr>
<td>FOSA</td>
<td>5 U</td>
<td>145%</td>
<td>145%</td>
<td>0%</td>
<td>70-130% / 30%</td>
<td>No Issue – Non-detect for Unspiked sample accurate as reported</td>
</tr>
</tbody>
</table>
Data Comparability

Precision = variability and reproducibility of results
- Assessed by evaluating the Relative Percent Difference (RPD) between duplicate results or Percent Relative Standard Deviation (RSD) between more than 2 results

\[
\text{RPD} = \frac{|\text{Result 1} - \text{Result 2}|}{\frac{2}{\text{Result 1} + \text{Result 2}}}
\]

Compare RPD to Method / QAPP criteria and possibly qualify results due to imprecision

Factors Affecting Comparability
- Changes in Field Collection Techniques
 - Elimination or introduction of PFAS during Sampling
- Not using Isotope Dilution for Recovery Correction of data
 - Sample data may vary by ±30% based on Surrogate recovery acceptance limits of 70-130%
- Degradation of Precursors
 - Formation of compounds of concern over time
- Not including Branched Isomers in reporting of data
 - Historic data may not have included branched isomers
- Sensitivity differences in data sets (QLs not the same)
LINEAR VS. BRANCHED ISOMERS

- Eleven known isomers of PFOS
- 499>80 and 499>99 transitions have different relative response factors for the linear and the branched isomers.
- Quantitative biases possible depending on standard type and MRM transitions used for quantitation
- Distribution/half lives in tissue are different between linear and branched
- Speciation is more important in research applications. Contaminant analysis issues centered around accuracy of quantitation

Sampling QA - Representativeness and Precision

- **Representativeness** of samples to site conditions acceptable?
 - Review MS/MSD and FD precision as quantitative measures of quality – Heterogeneity issues
 - Generally, results may be considered uncertain due to precision QC results but are not rejected
Field Duplicate Comparison

<table>
<thead>
<tr>
<th>Compound</th>
<th>QL (ng/L)</th>
<th>Sample Result (ng/L)</th>
<th>FD result (ng/L)</th>
<th>RPD</th>
<th>Issue?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>2</td>
<td>2 U</td>
<td>2 U</td>
<td>NC</td>
<td>No: Both results are non-detect</td>
</tr>
<tr>
<td>PFAS</td>
<td>2</td>
<td>11</td>
<td>8</td>
<td>32%</td>
<td>Yes: Both results > 2 x QL and RPD > 30%</td>
</tr>
<tr>
<td>PFNA</td>
<td>2</td>
<td>2.2</td>
<td>3.9</td>
<td>56%</td>
<td>Yes: Both results < 2 x QL and RPD > 50%</td>
</tr>
<tr>
<td>FOSA</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>11%</td>
<td>No: Both results > 2 x QL and RPD < 30%</td>
</tr>
</tbody>
</table>

Method 537.1 RPD acceptance: RPD ≤ 30% for values > 2x QL and RPD ≤ 50% for values < 2x QL

As a conservative approach, the highest of the two values should be associated with PFAS and PFNA for the sampling location.

Usability Evaluation Example

<table>
<thead>
<tr>
<th>Sample</th>
<th>Advisory Level (ng/L)</th>
<th>Result (ng/L)</th>
<th>Surrogate %R</th>
<th>LCS %R</th>
<th>MS/MSD %R/RPD</th>
<th>Issue?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>70</td>
<td>5 U</td>
<td>High</td>
<td>High</td>
<td>OK</td>
<td>No: Non-detect accurate as reported</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>66</td>
<td>OK</td>
<td>OK</td>
<td>%R low</td>
<td>Yes: result may be biased low and really >70 ng/L</td>
</tr>
<tr>
<td>C</td>
<td>70</td>
<td>63</td>
<td>Low</td>
<td>High</td>
<td>OK</td>
<td>Maybe: conflicting bias</td>
</tr>
<tr>
<td>D</td>
<td>70</td>
<td>110</td>
<td>Low</td>
<td>OK</td>
<td>High</td>
<td>No: conflicting bias but 110 >70 ng/L</td>
</tr>
</tbody>
</table>

Must evaluate the cumulative effect of all Quality Control to determine Usability and whether an Action Level has been exceeded.
Conclusion

• Overall Quality depends on cumulative Quality from sampling through analysis
• Specifically for PFAS – Field Collection & Analytical Method differences can introduce uncertainty
• Guidelines for Evaluating Quality
 – *Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed by Method 537, EPA 910-R-18-001* (November 2018)
 – Table B-15 of *QSM 5.2 Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.2* (DOD/DOE, 2018)

ITRC PFAS Resource

• Seven Fact Sheets (*available now*) and Technical Guidance Document (*late 2019*)
 – History and Use
 – Nomenclature Overview and Physicochemical Properties
 – Regulations, Guidance, and Advisories
 – Environmental Fate and Transport
 – Site Characterization Considerations, Sampling Techniques and Laboratory Analytical Methods
 – Remediation Technologies and Methods
 – Aqueous Film Forming Foam

 https://pfas-1.itrcweb.org/