Groundwater Sampling

Jean Firth, CG, PG
Wood Environment & Infrastructure Solutions

Presentation Overview

• Developing Groundwater Sampling Plans
 – Data Quality Objectives
 – Selecting Monitoring Locations
 – Monitoring Wells
 • New
 • Existing
 – Groundwater Sampling Techniques
 • Low Flow
 • No Purge
 • Grab
 – Sampling Drinking Water
 • Residential
 • Public Supplies
• Data Interpretation
 – Conceptual Site Model
 – Data Quality
 – Interpretation
• Case Studies

woodplc.com
Data Quality Objectives

What will the data be used for?

• Presence/absence
• Nature and extent
• Impacts to receptors
• Remedial Options
• Remedial effectiveness/Long Term Monitoring
Data Quality Objectives

What will the data be used for?

• Presence/absence
 – Site Characterization/Site Inspection
 • May be the first investigation
 – Limited subsurface information
 – Need to install wells
 • Previously investigated
 – Have some understanding of the subsurface
 – Wells already installed
 • Sampling program design
 – Sample locations biased
 – Longer well screens

Data Quality Objectives

What will the data be used for?

• Nature and extent
 – Remedial Investigation
 – Vertical and horizontal evaluation
 • What are your contaminants of concern?
 • Subsurface conditions
 – Sample program design
 • Discreet sampling
 • Multi level sampling
Data Quality Objectives

What will the data be used for?

• Impacts to receptors
 – Drinking water wells
 • Monitoring well depths representative of drinking water wells in the area
 • Residential sampling
 – Analytical
 – Borehole geophysics
 – Packer sampling
 – Effect of residential pumping
 – Surface water discharge
 • Multi level monitoring points
 – Evaluate gradients
 • Pore water (groundwater/surface water interface)

Data Quality Objectives

What will the data be used for?

• Remedial Options
 – Geochemistry
 – Focused on where the contamination is
 • Borehole geophysics
 • High resolution profiling
• Remedial effectiveness and Long Term Monitoring
Selecting Monitoring Locations

- Data Quality Objectives
- Conceptual Site Model
- In-situ Evaluations
 - Borehole geophysics
 - High resolution profiling
- Existing monitoring locations
Selecting Monitoring Locations

- Borehole Geophysics
 - Structure
 - Interaction between wells
 - Where contaminants might be migrating
 - You are more likely to get it right

- Groundwater profiler
 - VOC
 - Membrane interface probe (MIP)
 - Laser induces fluorescence (LIF) LNAPL/DNAPL
 - Discreet groundwater samples within a foot
 - Allows to more accurately place monitoring wells

- Limitations
 - Expensive
Monitoring Wells

• Installing New Wells
 – Data Quality Objectives
 – Contaminants of Concern
 • Screen interval
 – LNAPL or DNAPL
 – Water depth
 • Well diameter needed for pump

Monitoring Wells

• Standard wells
• Open hole
• Hybrid
• Multi-Level Monitoring Wells:
 – Single-Casing Systems:
 • Continuous Multi-channel Tubing (CMT)
 • Westbay
 • Waterloo System
 • Flexible Liner Underground Technologies (FLUTe)
 – Multiple-Casing Systems:
 • Nested Wells
 • BARCAD Wells
CMT Well

Existing Monitoring wells

- Why was it installed?
 - Is it in the right location to meet your needs?
- Do you know how it was constructed?
 - Bore hole camera
 - Optical televiewer
- When was it sampled last?
 - Redevelop
Groundwater Sampling Techniques

Low Flow Sampling

- Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells from USEPA September 19, 2017
Low Flow Sampling

- Contaminants of concern
 - Applicable for most
- Pumps
 - Peristaltic
 - <22 feet to water
 - Submersible
 - Grundfos
 - Hurricane
 - Bladder

Low Flow Sampling

- Why are you collecting the field parameters?
 - Indicate the well is at equilibrium with formation water
 - Evaluate specific conditions related to site contamination or migration
 - High or low pH may result in forming other contaminants
 - Conductivity/ORP may be used to evaluate elevated chemicals in the groundwater
 - Dissolved Oxygen discharge or recharge areas
No Purge Sampling

- Assumes water within the screen is at equilibrium
- Most applicable for long term monitoring
- Generally not appropriate during early investigations

No Purge Sampling

- Hydrasleeve™
 - Open LDPE or HDPE bag
 - Valve at the top
 - Installed closed and opens when removed
No Purge Sampling

- Passive diffusion bag
 - LDPE bag with deionized water
 - Left in the well for 2 to 4 weeks
- COCs
 - VOCs (except MTBE, MIBK and styrene)

Grab Samples

- Packer sampling
- Direct push sample point sampler
Grab Samples

• Data Quality Objectives
• Contaminants of concern
• Limitations
 – Where is the sample coming from?
 – Is the sample representative?

Sampling Drinking Water
Residential Drinking Water Sampling

- Plumbing
 - Contaminants of Concern
 - Metals (lead and copper)
 - Teflon (PFAS)
 - Is there any treatment?
 - Sediment filters
 - Water softeners
 - Carbon
- Well construction
 - Depth
 - Drilled/dug

Data Quality and Interpretation
Data Quality

- QA/QC
 - Field Blanks
 - Equipment/Material Blanks
 - Rinsate Blanks
 - Duplicate

Data Interpretation

- Conceptual site model
 - Does the data fit?
- QA/QC
 - How do the results affect usefulness of the data?
- Sampling methods
 - Turbidity
 - Pumps
 - Field parameters
Case Studies

Private Client
American Thermostat, South Ciaro, New York
Cold Regions Research Engineering Laboratory, Hanover, New Hampshire

Private Client

- Extensive groundwater sampling
- Geophysics and 3-D Visualization
 - Identified the most transmissive fractures
- Allowed focused in-situ treatment
 - Concentrations reduced and have met the clean up criteria
American Thermostat, South Ciaro, NY

- Background
 - PCE and TCE
 - Investigations conducted beginning in the early 1980s
 - Remediation completed in the late 1990s
 - Groundwater plume ~3,000 feet

• American Thermostat, South Cairo, NY
American Thermostat, South Cairo, NY

- PCE Plume: 2012/2018
Cold Regions Research Laboratory, Hanover, NH

- TCE site with initial investigations in the 1980s-1990s
- Existing mw network inadequate to characterize what was going on with the groundwater plume, did not span the vertical extent of the plume in the overburden
- Conducted groundwater profiling
- Showed higher levels of contamination at the vadose zone interface

Well MW-14-107

[Graph showing TCE Concentration vs Depth Below Water Table (ft)]

- S-10M µg/m3
- Depth: 0, 10, 20, 30 ft
- Concentrations: 65,000 µg/L, 310 µg/L, 98 µg/L, 38 µg/L
Soil Gas – Groundwater Relationship
SVE Operation Influence on Groundwater

MW-14-107
SVE PLOT TIMELINE

AOC2 Pilot Start
AOC2 Rebound Shutdown
AOC2 Restart
AOC2 Shut Down
AOC9 Pilot Start
AOC2 Shallow Restart
AOC 2 Shallow Switch to Deep
AOC 2 Shallow Restart

Summary

• Where are your samples coming from?

• What does your data mean?