Determinants and Health Impacts of PFAS Exposures in Humans

Joe M. Braun, RN, MSPH, PhD
Joseph_Braun_1@brown.edu

NEWMOA Webinar
October 3, 2016
Disclaimers

- I have no financial conflicts of interest
Outline

- Source of PFAS Exposure
 - Relative contributions
 - Water
 - Food
 - Other media

- Health Effects of PFAS Exposure in Humans
 - Fetal growth
 - Child/adult adiposity
 - Breastfeeding
Perfluoroalkyl Substances (PFAS)

- Persistent chemical compound used in commercial products and industrial applications
 - Carpet, textiles, leather, paper, cardboard, food packaging, electronics, cleaning agents, cosmetics, firefighting foams
- Perfluorooctanoate (PFOA) & perfluorooctane sulfonate (PFOS) commonly detected in serum
 - Half-life of 3-7 years
- Concern over effects on fetal, infant, and child health
- 2016 EPA drinking water advisory level set to 70 ppt (ng/L)
 - Cumulative
Sources of PFAS Exposure
PFAS Exposure in Adults

- General population primarily exposed by ingesting contaminated food, water, or dust
- Diet is predominant route of exposure for adults

<table>
<thead>
<tr>
<th>Daily Intake (pg/kg b.w.)</th>
<th>Mean</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Air</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Outdoor Air</td>
<td>1.3</td>
<td>12.0</td>
</tr>
<tr>
<td>House Dust</td>
<td>16.4</td>
<td>1028.3</td>
</tr>
<tr>
<td>Diet</td>
<td>2816.7</td>
<td>11483.3</td>
</tr>
<tr>
<td>Drinking water</td>
<td>21.7</td>
<td>86.7</td>
</tr>
<tr>
<td>Overall intake</td>
<td>2857.0</td>
<td>12611.2</td>
</tr>
<tr>
<td>PFOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Air</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Outdoor Air</td>
<td>.01</td>
<td>1.0</td>
</tr>
<tr>
<td>House Dust</td>
<td>31.7</td>
<td>4216.7</td>
</tr>
<tr>
<td>Diet</td>
<td>1500.0</td>
<td>4483.3</td>
</tr>
<tr>
<td>Drinking water</td>
<td>23.2</td>
<td>130.0</td>
</tr>
<tr>
<td>Overall intake</td>
<td>1559.8</td>
<td>8835.7</td>
</tr>
</tbody>
</table>

Fromme et al. 2009, Mogensen et al. 2015.
PFOS Exposures in Children

2-Year Old Children

Adult

- After weaning, PFAS sources likely to be similar to that of adults
- However, breast milk is a major source of exposure in infants . . .

Egeghy and Lorber 2011
Breastfeeding and PFAS

- Haug et al. (Envr Int, 2011) estimates that breastmilk represents majority of PFOA (83%) and PFOS (94%) exposure in infants
 - Infant intakes were 13 to 16-fold greater than adults

- Mogensen et al. (ES&T, 2015):
 - Exclusively breastfed infants had 30% greater PFOA/PFOS concentrations compared to non-breastfed infants

<table>
<thead>
<tr>
<th>Person</th>
<th>PFOA (ng/kg/d)</th>
<th>PFOS (ng/kg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant</td>
<td>4.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Adult</td>
<td>0.26</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Water PFAS

- Drinking water could be a major source in communities with contaminated water supplies.
Comparing Water-Serum PFOA

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Location</th>
<th>Water Source</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmett et al. 2006</td>
<td>291</td>
<td>Parkersburg, WV</td>
<td>Public/Private</td>
<td>105</td>
</tr>
<tr>
<td>Hoffman et al. 2011</td>
<td>108</td>
<td>Parkersburg, WV</td>
<td>Private</td>
<td>142</td>
</tr>
<tr>
<td>Hoffman et al. 2011</td>
<td>N/A</td>
<td>PK model</td>
<td>N/A</td>
<td>114</td>
</tr>
<tr>
<td>Hurley et al. 2016</td>
<td>1,566</td>
<td>California</td>
<td>Public</td>
<td>145</td>
</tr>
</tbody>
</table>

- Rule of thumb:
 - Serum PFOA (μg/L) = 125 x Water PFOA (μg/L)
- Note, there are a range of values, and individuals could be higher or lower
- Ratio for PFOS is ~ 175
Comparing Water-Serum PFAS

- 1 µg/L increase in water PFOA associated with 142 µg/L increase in serum PFOA

<table>
<thead>
<tr>
<th>Water PFOA (µg/L)</th>
<th>Serum PFOA (µg/L)</th>
<th>NHANES Percentile (2011-12)</th>
<th>NHANES Percentile Preg ♀ 2003-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>2.1</td>
<td>~50<sup>th</sup></td>
<td>~25<sup>th</sup></td>
</tr>
<tr>
<td>0.03</td>
<td>4.2</td>
<td>~90<sup>th</sup></td>
<td>~75<sup>th</sup></td>
</tr>
<tr>
<td>0.07</td>
<td>9.9</td>
<td>>95<sup>th</sup></td>
<td>>95<sup>th</sup></td>
</tr>
</tbody>
</table>
Dietary PFAS

- Detected in many foods (milk, butter, meats, fish, & vegetables)
 - PFOA less bio-accumulative in fish than PFOS
 - For some PFAS, precursors may be important (e.g., PFHxS)

- NHANES study did not report expected relations between diet and serum PFAS
 - Reasons?

Dietary PFAS: Packaging

- PFAS used in paper and paperboard as water and oil repellants
 - Fast food wrappers, microwave popcorn, and pizza box liners

- Breakdown of precursors in food packaging (Fromme et al., 2009)
 - FDA banned PFAS from food contact in 2016 (81 CFR 5)
Other Potential PFAS Exposures

- Washburn et al. 2005 evaluated PFOA in:
 - Treated/milled carpets, treated apparel, PTFE tape, cookware, and woven medical garments
- Low potential for exposure
- Assuming aggregate exposures, <0.5 ng/mL increase in serum PFOA
Conclusions about Sources of PFAS

- Relative contribution of different media will vary by many factors
 - Age: Infants > adults
 - Geography: Water contamination vs. none
 - Relative contributions vary: Dust

- Public health messaging:
 - Balanced diet (i.e., hedging)
 - GAC water filtration
 - Wet mopping, remove PFAS containing textiles
PFAS and Human Health
PFOA/PFOS and Fetal Growth

- Consistent animal & human evidence that PFOA (maybe PFOS) exposure associated with reduced birth weight
 - 19 gram decrease in BW per 1 ng/mL increase in serum PFOA (95% CI: -30, -7)
 - 23 mg decrease in pup birth weight (95% CI: -29, -16) for each 1 mg/kg/d increase in PFOA exposure

Koustas et al., EHP, 2014; Johnson et al., EHP 2014
PFAS and Child/Adult Adiposity

- Prenatal PFOA/PFOS associated with excess adiposity in some, but not all studies
- Cohort of 700+ US mom-child pairs:
 - Prenatal PFOA/PFOS associated with multiple measures of adiposity at 8, but not 3 years of age
- Cohort of 664 Danish mom-adult pairs
 - Prenatal PFOA associated with higher BMI/WC at 20 years of age
 - Stronger associations in females

Prenatal PFAS and Child Growth

- Could exposure-related reductions in BW be responsible for excess adiposity later in life?
- Rapid growth in 1st 3 years of life associated with increased adiposity at 6-10 years of age
- Rapid growth also associated with risk of cardiometabolic disease
 - Increased blood pressure, triglycerides, LDL, insulin resistance, and central adiposity

Difference in BMI from 2 to 8 Years (n=285, 1,012 visits)

T1: 0.12; CI: -0.08, 0.32
T2: 0.44; CI: 0.23, 0.64
T3: 0.37; CI: 0.14, 0.60
T2 x age p=0.03
T3 x age p=0.11

Braun et al., Obesity, 2015
PFAS and Breastfeeding

- PFOA/PFOS exposure during pregnancy associated with decreased breastfeeding duration
 - Doubling in PFOA associated with 0.5 month (95% CI: 0.3, 0.7) reduction in exclusive breastfeeding duration
- Animal studies show that PFAS can influence breast development and lactation hormones

Risk of Quitting Breastfeeding at 3 Months by Prenatal PFOA

4th vs. 1st quartile RR=1.8, 95% CI: 1.2, 2.5

Romano et al., Environ Res, 2016

Median PFOA in Quartile (ng/mL)
PFAS and Breastfeeding

- Important for mother and infant
- Weanlings dilemma: Does human milk contamination limit the advantage of extended breastfeeding?
- Public health messaging
 - Continue breastfeeding
 - Reduce or minimize exposure
Summary of PFAS Associations with Growth, Adiposity, and Breastfeeding

- High quality epidemiological data suggest that prenatal PFAS exposure associated with
 - Reduced birth weight
 - Increased risk of obesity/overweight and excess adiposity
 - Possibly through alterations in child growth
 - Decreased duration of lactation
Summary of Other Health Effects

- **Neurodevelopment**: “Insufficient” evidence to conclude whether PFAS exposures have adverse effects on child neurodevelopment

- **Immune Function**: NTP monograph has tentative conclusion that PFOA/PFOS are presumed to be immune hazards to humans
Implications of Elevated Water PFOA for Human Health

- Using data from Romano et al. 2016 and Hoffman et al. 2011
- Assuming only water exposure, increased risk of quitting breastfeeding at or below current health advisory level

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Serum PFOA (ng/mL)</th>
<th>Water PFOA (ng/L)</th>
<th>RR of Quitting BF at 3M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>3.1</td>
<td>22</td>
<td>Ref</td>
</tr>
<tr>
<td>2nd</td>
<td>4.6</td>
<td>33</td>
<td>1.32</td>
</tr>
<tr>
<td>3rd</td>
<td>6.3</td>
<td>45</td>
<td>1.63</td>
</tr>
<tr>
<td>4th</td>
<td>10</td>
<td>71</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Acknowledgements

Funding:
R00 ES020346,
R01 ES024381,
R01 ES025214,
P01 ES11261,
R01 ES014575, &
R01 ES020349

NIH National Institute of Environmental Health Sciences

BROWN

Cincinnati Children's Hospital Medical Center

UNIVERSITY OF Cincinnati

CDC

SFU

Simon Fraser University Thinking of the World

BROWN School of Public Health