1,4-Dioxane Remediation Technology Development
An Overview Based on 70+ Projects

Paul M. Dombrowski, P.E.

NEWMOA 1,4-Dioxane Assessment & Remediation Workshop

Outline

• Overview of AECOM 1,4-Dioxane Sites
• Demonstrated Treatment Technologies
• Natural attenuation and bioremediation
• Developments to validate biodegradation

1,4-DIOXANE

\[
\text{H} - \text{O} - \text{C} - \text{O} - \text{H}
\]
What is 1,4-Dioxane?

- **Commonly known:** Solvent stabilizer and acid corrosion inhibitor used to prevent decomposition of 1,1,1-trichloroethane (usually 3-4.5% by vol.)

- **Not commonly known:**
 - Main or minor ingredient of many products
 - Produced as by-product from polyester or nonionic detergent manufacturing process

1,4-Dioxane Properties

- Very low Henry’s Law Constant
 - unlikely to volatilize into soil vapor

- Very low octanol-water coefficient (Kow)
 - unlikely to sorb to soil particles and is mobile in saturated soils

- High miscibility
 - migrates farther in groundwater than other groundwater VOCs
Once Released…..

Air
- Readily evaporates, moderate vapor pressure of 40 mm Hg at 25°C
- As a vapor, breaks down readily to form aldehydes and ketones

Soil
- Tends to migrate through soil rather than adsorb to particles (except for moist clay/silt)

Water
- Completely soluble in water
- Tends to stay dissolved, therefore low volatilization risk from groundwater
- Chemically stable, not expected to degrade naturally once in groundwater or surface water

Regulatory Updates

<table>
<thead>
<tr>
<th>State</th>
<th>2009</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>--</td>
<td>0.67</td>
</tr>
<tr>
<td>Alaska</td>
<td>--</td>
<td>77</td>
</tr>
<tr>
<td>California</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Colorado</td>
<td>6.1</td>
<td>0.35</td>
</tr>
<tr>
<td>Connecticut</td>
<td>--</td>
<td>3 or 50*</td>
</tr>
<tr>
<td>Florida</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Georgia</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Maine</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>--</td>
<td>0.3</td>
</tr>
<tr>
<td>Michigan</td>
<td>85</td>
<td>0.67</td>
</tr>
<tr>
<td>Nevada</td>
<td>6.1</td>
<td>--</td>
</tr>
<tr>
<td>New Jersey</td>
<td>10</td>
<td>0.4 (draft)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>North Carolina</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>5.6</td>
<td>6.4</td>
</tr>
<tr>
<td>South Carolina</td>
<td>6.1</td>
<td>0.67</td>
</tr>
<tr>
<td>Texas</td>
<td>83</td>
<td>9.1</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>--</td>
<td>3</td>
</tr>
</tbody>
</table>

No Federal MCL

More states now have criteria

Criteria decreasing in many states

Numerous states have criteria < 1 ug/L
AECOM Survey of 1,4-Dioxane Sites

- Government: 20%
- Industry: 32%
- DoD: 20%
- Chem/Pharma: 26%
- Energy: 1%
- O&G: 1%

70+ Sites

Co-Contaminants with Dioxane:

- TCE
- 11DCE
- TCA
- CVOCs
- Cr
- Other Organics
- Dioxane only

% of DX Sites

AECOM Survey of 1,4-Dioxane Sites

- Remedial Action: 41%
- Monitoring: 39%
- FS/Pilot: 20%
- Others: 8%
- ISCO: 27%
- Phyto: 12%
- MNA: 11%
- P/T: 42%

Sites Under Full-Scale Dioxane Treatment

22 Sites under remedial actions without full-scale 1,4-dioxane treatment
AECOM Site Observations

- Significant number of sites documented no detected 1,4-dioxane during site characterization
- 1,4-Dioxane plumes are commonly co-mingled with CVOCs, especially in source areas. CVOCs in source areas likely have remedy in place (ERD, air stripping) without considering dioxane
- Most 1,4-dioxane plumes have not been fully characterized
- Most sites have no long term monitoring data to support plume stability argument
- For several sites with cumulated data, natural attenuation was observed but biodegradation mechanisms could not be confirmed due to lack of diagnostic tools (additional lines of evidence)
Example Pump & Treat Projects

<table>
<thead>
<tr>
<th>COCs</th>
<th>Agency</th>
<th>Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxane, VOCs</td>
<td>RWQCB, Santa Ana region</td>
<td>LGAC for VOCs and UV oxidation for dioxane</td>
</tr>
<tr>
<td>Dioxane, perchlorate, VOCs,</td>
<td>Orange County Water District</td>
<td>LGAC for VOCs, ion exchange for perchlorate, UV oxidation for dioxane, regenerable ion exchange for nitrate.</td>
</tr>
<tr>
<td>nitrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perchlorate, CVOCs, and</td>
<td>San Francisco RWQCB</td>
<td>Advanced ozone/hydrogen peroxide oxidation for dioxane, anion exchange for perchlorate, and the existing GAC vessels for polishing of residual VOCs and oxidation by-products</td>
</tr>
<tr>
<td>dioxane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxane, VOCs</td>
<td>EPA</td>
<td>SVE/DPE for soil and perched aquifer; ex situ advanced oxidation (HiPOx) for dioxane and VOCs</td>
</tr>
<tr>
<td>Dioxane, CVOCs</td>
<td>FDEP</td>
<td>P&T with AOP technology</td>
</tr>
</tbody>
</table>
Pump and Treat

- Cost per mass of DX removal increased when plume is large and dilute
- Multiple treatment technologies may be required
 - Metals removal critical to performance of Advance Oxidation Units

In-Situ Chemical Oxidation

- **Chemical Oxidants**
 - Alkaline activated persulfate
 - Peroxide activated persulfate
 - Catalyzed hydrogen peroxide
 - Ozone

- **Applicability**
 - Source treatment
 - Wide range of dioxane concentrations
 - Applicable for dioxane and co-contaminants
 - Repeated treatments are needed
 - The effectiveness is mixed and may be limited by oxidant distribution
 - Other polishing steps are needed to achieve end point (e.g., bio or MNA)

- **Regulatory Acceptance - High**
ISCO Case Study (Total VOCs)

• Total VOCs defined as the sum of BTEX, PCE, TCE, cis-1,2-DCE, and 1,1,1-TCA.

ISCO Case Study

Area B (Dioxane Results)

<table>
<thead>
<tr>
<th></th>
<th>MEOW-3</th>
<th>ME-04a</th>
<th>ME-BO2S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jun-08</td>
<td>Jun-09</td>
<td>Jun-10</td>
</tr>
<tr>
<td>110</td>
<td>25</td>
<td>20</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Jun-08</td>
<td>Jun-09</td>
<td>Jun-10</td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>15</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>Mar-08</td>
<td>Jan-09</td>
<td>Feb-10</td>
</tr>
<tr>
<td>36</td>
<td>17</td>
<td>12</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- NH AGQS was 3 ug/L at time of ISCO
 - AGQS = 0.35 ug/L currently
Phytoremediation

Definition: "direct use of green plants and their associated microorganisms to stabilize or reduce contamination in soils, sludges, sediments, surface water, or ground water ... Sites with low concentrations of contaminants over large cleanup areas and at shallow depths present especially favorable conditions for phytoremediation."
- U.S. EPA, 2011

- Plants can enhance the removal of contaminants by at least two mechanisms:
 1. direct uptake and, in some cases, in-plant transformations to less toxic metabolites; and
 2. stimulation of microbial activity and biochemical transformations in the root zone through the release of exudates and enzymes

- Half-life in the atmosphere is on order of hours

Phytoremediation

- Hybrid poplar trees have been used for phytoremediation of 1,4-dioxane
 - Extremely fast growing, hardy, and tolerant of high organics concentrations
 - Direct uptake of organics and, in some cases, transformation to less toxic metabolites.
 - Release of chemicals that may stimulate degrading populations of microbes

- 8 day Hydroponic Study (E.W. Aitchison, J.L. Schnoor, et. al., 1997)
 - 30-79% (average = 54%) of the dioxane mass removed from reactors
 - Degradation by root-zone microorganisms minimal compared to plant uptake.
 - Majority of 1,4-dioxane taken up into the plant was volatilized (average = 77%), with remaining mass concentrated primarily in the stem.

- AECOM Field Study
 - A pilot program was installed in March 2004, with subsequent full-scale system
 - Designed for combined purposes of hydraulic control and 1,4-dioxane removal
In-Situ Thermal Remediation

Description: Subsurface soils heated (applied heat directly or generated in situ) to above the boiling point of the target VOCs contaminants (typically >100°C) and evaporating VOCs from the soil. Vapors are collected from the subsurface through soil vapor extraction wells for subsequent above-ground treatment.

Vapor-Liquid Mass Ratios during Steaming

The 1,4-dioxane Mass Ratio (steam to water) is large in the concentration range observed in environmental settings. Boiling rapidly concentrates the 1,4-dioxane into the steam.

- Henry's Constant increases with temperature increases

Source: Scheider and Lynch, J. Am. Chem. Soc., 65(6), 1943
Thermal Remediation

1,4-Dioxane – Field Case Study

- 95% remains in vapor phase
- Although GAC is poor for water-dissolved 1,4-dioxane, GAC works well for 1,4-dioxane vapor

Gases In
Condenser
Gases Out
1,600 ppb
0.12 lb/day

Condensed Steam
94 µg/L
0.006 lb/day

Thermal Remediation

1,4-Dioxane – Field Case Study

Before ERH
1,000 to 90,000 µg/L

After ERH
All <50 µg/L

>99.8% Removal
Monitored Natural Attenuation

- A common approach when CVOCs are under ERD treatment
- Not a primary risk driver compared to CVOCs
- Regulatory agencies are generally skeptical on MNA approach
 - 1,4-dioxane is relatively resistant to biodegradation in water and soil and does not bioconcentrate in the food chain (USEPA 2014 Fact Sheet)
 - Dioxane is considered to be not readily biodegradable (USEPA Problem Formulation and Initial Assessment for Dioxane, USEPA 2015)

Polyester Manufacturing Plant /1,4-Dioxane Only

- Dioxane was generated as unwanted process byproduct at industrial facility that manufactured raw materials used to produce polyester
- Proposed MNA as sole remedy with leak control based on
 - No exposure risk
 - No off-site concern
 - >10 years of plume monitoring
 - Plume stability demonstrated
 - Site specific decay rates and predicted shrinking plume
- MNA approved in 2004 by state agency
- Plume has been shrinking as predicted, monitoring frequency reduced to 5 years
 - Investigation started in early 1990s
 - ~400-acre dioxane plume, largely contained on the 1,600-acre site
 - Iron reducing conditions
 - Degradation mechanisms were unknown

(Chiang et al, 2008)
Industrial Site / ERD Remediated CVOCs

- Co-contaminants include TCE, DCEs, VC, total chromium
- 2006-Present: ERD
- Summer 2011: nZVI pilot study in the "Hot Spot" area
- May-July 2014: DPE and Recir. ERD
- No remedy targeted for dioxane

Industrial Site / 1,4-Dioxane

- High off-site dioxane concentrations
- CVOCs and dioxane may be from different sources
- Plume shrinkage after full-scale ERD (Why?)
- Dioxane plume remains off-site
1,4-Dioxane is Aerobically Biodegradable

Co-Metabolic Biodegradation

1,4-Dioxane and primary substrates (e.g., methane, propane, THF, other cyclic ethers, etc...)

Metabolic Biodegradation

1,4-Dioxane

CB1190

Biodegradation Field Demonstrations

• Stable Isotope Probing to Verify MNA Potential (Chiang et al. 2012)
• Dioxane Biomarker Development (Gedalanga et al 2014)
• **Dioxane Biomarker Demonstrations**
• Cometabolic Biodegradation Pilot Studies
• CB1190 Bioaugmentation Pilot Study Updates (dioxane biodegrader)

UCLA and AECOM Team

5 Bio Pilots

FS/Pilot 18%
RA 35%
RI 47%
Step Approach on Biomarker Applications

Contact Dora Chiang (dora.chiang@aecom.com) at AECOM for details

Summary

- Current Technologies
 - Ex-situ advanced oxidation process
 - ISCO is proven and a feasible in-situ technology but polishing step is needed
 - Industry needs cost effective and sustainable options

- In-situ bioremediation is possible, but not widely applied, and no full-scale application yet

- MNA is possible but attenuation is not yet found ubiquitous, biotransformation needs to be differentiated from dilution

- Biomarkers and CSIA have been developed but more validation data are needed to confirm usefulness