Characterization and Treatment of Perfluorinated Compounds: The Next Big Emerging Class of Contaminants

Dave Woodward
AECOM

January 15, 2015
Copyright AECOM, Inc. 2015. All rights reserved.

Presentation Outline

• Background/Overview
• Regulatory Status/Considerations
• Site Characterization
• Risk Assessment
• Remedial Action Implications
• Summary
• Q&A and Discussion

PFOA

PFOS
Background/Overview – Mfg. and Uses

- Synthetic chemicals used in manufacturing fluoro-polymers
 - PFOA – perfluorooctanoic acid and its principle salts, manufactured from 1947-present. 8 manufacturers phased out production by 2010
 - PFOS – perfluorooctane sulfonate, manufactured from 1949-2002
- Typically only a fraction of final product/not an end product
- Used in making surface treatments
 - Non-stick cookware (Teflon®)
 - Breathable, all weather clothing (Gore-tex®)
 - Fluoro-elastomers (gaskets, O-rings, Hoses)
 - Paper and packaging protectors
- Used in making performance chemicals
 - Aqueous Film Forming Fire fighting foam (AFFF)
 - Mining and oil surfactants
 - Metal plating baths (chromium)
 - Insecticides

Aqueous Film Forming Foams (AFFF)

- PFCs are used in AFFFs that were routinely used for fire fighter training at municipal and military fire training areas
- AFFF blankets fuel, cools the fuel surface, prevents re-ignition by suppressing release of flammable vapors
- Until 2000, AFFF effluent from fire-fighting activities were allowed to discharge to the environment
- C6 and Fluorine free AFFF developed as alternatives
- C8 AFFF still on DOD and other facilities
- At least 9 different formulations
Background/Overview – AFFF & Fire/Crash Sites

Estimated Quantity of AFFF in U.S.¹

<table>
<thead>
<tr>
<th>AFFF Use Sector</th>
<th>Estimated Quantity AFFF Concentrate (Gallons)</th>
<th>Possible Margin of Error ± %</th>
<th>Likely Range of Actual Quantity (Gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Military</td>
<td>2,838,500</td>
<td>± 5%</td>
<td>2,696,575 – 2,980,425</td>
</tr>
<tr>
<td>Other Federal</td>
<td>18,500</td>
<td>0 ± 25%</td>
<td>19,500 – 24,375</td>
</tr>
<tr>
<td>Aviation (ARFF)</td>
<td>729,016</td>
<td>-5 ± 20%</td>
<td>692,565 – 784,819</td>
</tr>
<tr>
<td>Aviation (Hangars)</td>
<td>850,000</td>
<td>± 25%</td>
<td>637,500 – 1,062,500</td>
</tr>
<tr>
<td>Merchant Ships/Offshore</td>
<td>80,000</td>
<td>± 25%</td>
<td>60,000 – 100,000</td>
</tr>
<tr>
<td>Fire Dept (non-aviation)</td>
<td>1,360,000</td>
<td>± 35%</td>
<td>884,000 – 1,836,000</td>
</tr>
<tr>
<td>Oil Refineries</td>
<td>1,900,000</td>
<td>± 25%</td>
<td>1,425,000 – 2,375,000</td>
</tr>
<tr>
<td>Other Petro-Chem</td>
<td>2,000,000</td>
<td>± 35%</td>
<td>1,300,000 – 2,700,000</td>
</tr>
<tr>
<td>Misc. Applications</td>
<td>150,000</td>
<td>± 35%</td>
<td>97,500 – 202,500</td>
</tr>
<tr>
<td>Total</td>
<td>9,927,016</td>
<td></td>
<td>7,812,640 – 12,155,619</td>
</tr>
</tbody>
</table>

¹Robert Darwin, Hughes & Assoc., Aug 2004

DoD Fire/Crash/Training Sites²

<table>
<thead>
<tr>
<th>Service</th>
<th>Total Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force</td>
<td>353</td>
</tr>
<tr>
<td>Army</td>
<td>94</td>
</tr>
<tr>
<td>Navy</td>
<td>132</td>
</tr>
<tr>
<td>DLA</td>
<td>3</td>
</tr>
<tr>
<td>FUDS</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>584</td>
</tr>
</tbody>
</table>

²DoD Knowledge Based Corporate Reporting System, 2008

Background/Overview – Chemical Properties

<table>
<thead>
<tr>
<th>Chemical Properties</th>
<th>PCB (Arochlor 1260)</th>
<th>PFOA</th>
<th>PFOS</th>
<th>TCE</th>
<th>Benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Weight</td>
<td>357.7</td>
<td>414.07</td>
<td>538</td>
<td>131.5</td>
<td>78.11</td>
</tr>
<tr>
<td>Solubility</td>
<td>0.0027 mg/L @24°C</td>
<td>3400 – 9500 mg/L @25°C</td>
<td>519 mg/L @20°C</td>
<td>1100 mg/L @20°C</td>
<td>1780 mg/L @20°C</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>4.05x10⁻⁶ mmHg</td>
<td>0.5-10 mmHg</td>
<td>2.48x10⁻⁸ mmHg</td>
<td>77.5 mmHg</td>
<td>97 mmHg</td>
</tr>
<tr>
<td>Henry’s Constant</td>
<td>4.6x10⁻³ atm-m³/mol</td>
<td>0.0908 atm-m³/mol</td>
<td>3.05 x10⁻⁶ atm-m³/mol</td>
<td>0.0103 atm-m³/mol</td>
<td>0.0056 atm-m³/mol</td>
</tr>
</tbody>
</table>
Regulatory Status – Increasing Concerns

- Concerns originated in 1999 - 3M submitted information to US EPA regarding potential risks, 3M phased out PFOS production in 2002
- 2002 market shift in focus to C4-C6 chain length sulfonates and fluoro-telemer sulfonates (Fts)
- Several EPA, OECD, and UK Environmental Hazard/Risk Assessments between 2002 and 2006
- 2005 Stockholm Convention on Persistent Organic Pollutants listing
- EPA included several PFCs on Contaminant Candidate List-3 in 2009
- EPA included 6 PFCs in Unregulated Contaminant Monitoring Rule-3
- 2014 – US EPA OSWER crafting PFC screening levels, established Health Advisory Levels
- At present, no ‘regulatory driver’ or minimum risk level (MRL) in US

Background/Overview - Other PFCs

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Acronym</th>
<th>Chemical Abstract Services Registry Number (CASRN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-ethyl perfluorooctanesulfonamidoacetic acid</td>
<td>NEtFOSAA</td>
<td>-</td>
</tr>
<tr>
<td>N-methyl perfluorooctanesulfonamidoacetic acid</td>
<td>NMeFOSAA</td>
<td>-</td>
</tr>
<tr>
<td>Perfluorobutanesulfonic acid</td>
<td>PFBS</td>
<td>375-73-5</td>
</tr>
<tr>
<td>Perfluorodecanoic acid</td>
<td>PFDA</td>
<td>335-76-2</td>
</tr>
<tr>
<td>Perfluorododecanoic acid</td>
<td>PFDoA</td>
<td>307-55-1</td>
</tr>
<tr>
<td>Perfluorooctanoic acid</td>
<td>PFHxA</td>
<td>307-24-4</td>
</tr>
<tr>
<td>Perfluorobutanoic acid</td>
<td>PFUnA</td>
<td>72629-94-8</td>
</tr>
<tr>
<td>Perfluorooctanesulfonic acid</td>
<td>PFOS</td>
<td>1763-23-1</td>
</tr>
<tr>
<td>Perfluorooctanoic acid</td>
<td>PFOA</td>
<td>335-67-1</td>
</tr>
<tr>
<td>Perfluorotetradecanoic acid</td>
<td>PFTA</td>
<td>376-06-7</td>
</tr>
<tr>
<td>Perfluorotridecanoic acid</td>
<td>PFTrDA</td>
<td>72629-94-8</td>
</tr>
<tr>
<td>Perfluorooctanoic acid</td>
<td>PFUnA</td>
<td>2058-94-8</td>
</tr>
</tbody>
</table>

Bold = on UCMR3 monitoring list plus PFOS/PFOA
Site Characterization - Recommended Sampling Procedures

- Sampling & QAPPs must address potential for cross contamination and/or false positives, sources include:
 - Water proof field notebooks
 - Teflon® Liner in bottles
 - Teflon® bailers or wells
 - Decon 90 decon solution, possibly others
 - Fast food wrappers
 - Tyvek® suits

- Preference for a 250 mL HDPE bottle, no preservatives

- 7-14 day holding time, Preserve on ice

- No commercially demonstrated screening kit/tools, several under development
 - Ziltek Remscan Infrared scanner (AUS)
 - CRC Care (AUS)
 - Methylene Blue Active Substance – Colorimetric test for Anionic Surfactants

Site Characterization - Laboratory Analysis

- Liquid Chromatography – Mass Spectrometry – EPA Method 537
 - LC / MS /MS

- International Standard ISO 25101
 - PFOS and PFOA in water

- Extraction / Holding Time
 - Water 7 days / 40 days
 - Soils 14 days / 40 days

- Method Detection Limits
 - Water
 - PFOS – 0.015 to 0.001 ug/L
 - PFOA – 0.010 to 0.004 ug/L
 - Soil
 - PFOS – 0.4 to 0.01 ug/kg
 - PFOA – 1.0 to 0.5 ug/kg

- Limited Certified Laboratories
 - USA Laboratories
 - Test America – Denver, CO
 - MPI Research Inc. – State College, PA
 - Pace Analytical
 - UL Laboratories – South Bend, IN
 - German Laboratories
 - Fresenius
 - Analytis
 - Canada Laboratories
 - Axys Analytical Services
 - Maxxam
 - Intertek – United Kingdom

- Data comparability between laboratories is difficult

- Costs
 - $250 to $500 per sample (US $)
Risk Assessment – What we know/don’t know

- Important to note that there are 2 distinct focuses on PFC risks
 - General exposures via non-environmental media (e.g. Teflon cooking products and food packaging materials)
 - Site-specific exposures by way of contaminated environmental media

- What we do know
 - Toxicity to animals
 - Bioaccumulates
 - Environmentally persistent
 - Widespread in human population around globe

- What we don’t know
 - Widespread Exposure at unacceptable concentrations?
 - Toxicity to humans?
 - Issue of potential for prostate cancer is contentious
 - Potential link to Autism is contentious
 - 2012 C8 Panel conclusions (Kidney Cancer) – 1st carcinogenic evidence?

Remedial Action Implications – Standards/SL’s

<table>
<thead>
<tr>
<th>Regulatory Agency</th>
<th>PFOS</th>
<th>PFOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPCA – Residential SRV</td>
<td>2100 µg/kg</td>
<td>2100 µg/kg</td>
</tr>
<tr>
<td>MPCA – Recreational SRV</td>
<td>2500 µg/kg</td>
<td>2600 µg/kg</td>
</tr>
<tr>
<td>MPCA – Industrial SRV</td>
<td>14000 µg/kg</td>
<td>13000 µg/kg</td>
</tr>
<tr>
<td>US EPA Region 4 – Residential</td>
<td>6000 µg/kg</td>
<td>16000 µg/kg</td>
</tr>
</tbody>
</table>

Groundwater		
US EPA – drinking water HAL	0.2 µg/L	0.4 µg/L
MDH – groundwater	0.3 µg/L	0.3 µg/L
New Jersey – drinking water	---	0.04 µg/L
North Carolina – groundwater	----	2 µg/L
Canada DW Guidance Value	0.7 µg/L	0.7 µg/L
UK DEFRA – drinking water	0.3 µg/L	10 µg/L
Germany – drinking water	0.1 – 0.3 µg/L	0.1 – 0.3 µg/L
Remedial Action Implications - Challenges

- Emerging concern with significant Site characterization challenges
 - large dilute plumes will likely form and a “source area” may not exist
 - co-mingled plumes (e.g. BTEX, TPH, Fuels)
 - Many sources, opportunities for cross contamination
- Limited remediation experience and almost no previous commercial focus on developing remediation technologies
- Chemical property challenges
 - resistant to most conventional treatment technologies
 - high solubility and low Henry’s law constant
- Existing aerobic bio or ISCO treatment may partially oxidize other AFFF compounds (e.g. precursors) and produce additional PFOS/PFOA

Treatment of Solids

- **Landfill**
 - Commercially available vs. special construction
 - Leachate management & treatment considerations
- **Isolate in place**
 - Site specific considerations
 - Capping
 - Landfill reconstruction
- **Incineration**
 - Proven technology
 - Generally for lower Volume, higher Concentration materials
Treatment of Water

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Technology</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation</td>
<td>Filtration</td>
<td>Lab</td>
</tr>
<tr>
<td></td>
<td>Adsorption</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>Lab</td>
</tr>
<tr>
<td>Destruction</td>
<td>Oxidation</td>
<td>Lab</td>
</tr>
<tr>
<td></td>
<td>Pyrolysis</td>
<td>Lab</td>
</tr>
<tr>
<td></td>
<td>Photochemical</td>
<td>Lab</td>
</tr>
<tr>
<td></td>
<td>Thermal Oxidation</td>
<td>Full</td>
</tr>
</tbody>
</table>

Optimal treatment technology would be highly dependent on the initial PFC concentration (i.e., high for manufacturing waste or low for environmental distributed) and the matrix in question.

Remedial Action Implications – Scenarios

- No current remediation with potential or confirmed presence of PFOA/PFOS
 - Potential - when to look and why?
 - Confirmed – Pump and treat likely best current option
- Existing pump and treat remedy with treatment via industrial WWTP
 - May or may not address PFOS/PFOA
 - Potential for PFC concentrations to increase
- Existing pump and treat remedy with independent GW treatment system
 - May or may not address PFOS/PFOA
- Existing in situ or approved Monitored Natural Attenuation remedy
 - Not likely to address PFOS/PFOA
Possible In-Situ Treatment Technologies

- **FMC (now PeroxyChem)** - testing activated persulfate and Fenton's reagent to treat PFOS/PFOA
- **Washington State University** – testing degradation of PFOA through catalyzed hydrogen peroxide propagation reaction
- **ES&T** - Reductive Defluorination: Vitamin B12 as electron transfer mediator for PFOS reduction, Ti(III)-citrate as the bulk electron source
- **Removals of PFOA/PFOS in pilot-scale constructed wetland**
- **University of Arizona** - Boron-Doped Diamond Film Electrodes for oxidation of PFOS and TCE

Enzyme Catalyzed Oxidative Coupling

- **UGA/AECOM** has been funded by AFCEC to evaluate “Enzyme Catalyzed Oxidative Coupling (ECOC) Reactions” to treat PFCs. This technology was originally developed for treatment of other persistent organics (PCBs, PAHs)
- **ECOC** is a process that is inspired by how natural organic matters are broken down naturally through enzyme catalyzed oxidation process
- In this process PFC is oxidized by organic radicals catalyzed by extracellular enzymes.

![Phanerochaete chrysosporium](Genus of White Rot Fungi)
Summary

• Primary sources of potential PFOS/PFOA includes AFFF releases, plating facilities, and landfills.

• AFFFs represent the likely most significant source, were produced in at least 9 different formulations, and contain many different PFCs

• Significant potential for background contamination/other sources

• Compounds are very soluble, recalcitrant and persistent

• Large dilute plumes will form and can represent potential financial and receptor risks, especially for surface water/ecological receptors

• No current ‘regulatory driver’ or MRL in US but EPA crafting screening levels and requesting sampling/analysis

Summary

• More cleanup standards will likely be established and trend downward

• Existing remediation systems are not likely addressing PFCs, could exacerbate problems (e.g. PFOS as metabolite of precursors)

• Landfill, isolation or incineration are likely best current soil treatment options

• P&T with GAC may be best current GW treatment option; Biological and Enzymatic treatment promising

• PFCs will likely increasingly become problematic for PRPs with a focus beyond PFOS/PFOA

• PFCs appear to be unlike anything we’ve dealt with before and represent a significant challenge.
Questions and Discussion

Key PFC Resources

- **Dave Woodward** – Vice President, Director of Remediation Technology
 AECOM – Mechanicsburg, PA
 (717) 790-3405
dave.woodward@aecom.com

- **Dora Chiang, PhD, PE** – Assoc. Vice President, Deputy Director of Remediation Technology
 AECOM – Atlanta, GA
 (404) 965-9647
dora.chiang@aecom.com

- **Rachel Casson** – Associate Director
 AECOM – Sydney, NSW, Australia
 +61 2 8934 0142
 rachael.casson@aecom.com

- **Katherine Davis, PhD** – Senior Geologist
 AECOM – Newark, DE
 (302) 781-5890
 Katherine.I.davis@aecom.com