HVAC Systems and Vapor Intrusion

Steven M. Caulfield, P.E., CIH
Turner Building Science & Design, LLC
Harrison, ME/Concord, NH
1-800-439-3446
Air Handling System Components

- Fan
- Coils
- Dampers
- Sensors
- Supply
- Return
- Outside Air
- Exhaust

Copyright 2008 Turner Building Science & Design, LLC
Air Handling System Components

- Coils
- Fan
- Dampers
- Sensors

Hot Water/Steam
Chilled Water/DX

Copyright 2008 Turner Building Science & Design, LLC
Air Handling System Components

Return

Outside Air

Supply

Exhaust

Copyright 2008 Turner Building Science & Design, LLC
Air Handling System Components

- **Fan**
 - Moves air, provides +/- pressure

- **Coils**
 - Heat or cool (temper) air

- **Dampers**
 - Adjust air flow within ducts

- **Sensors**
 - Measure conditions in air handling system
 - Temperature, humidity, pressure, CO2, etc.
Air Handling System Components

- **Supply**
 - Air delivered to the occupied space
 - Positive pressure

- **Return**
 - Air from the space directed back to the AHU
 - Negative pressure

- **Outside Air**
 - Ventilation air mixed with return at AHU

- **Exhaust**
 - Air removed from the occupied space

Copyright 2008 Turner Building Science & Design, LLC
Pressure Fundamentals

- Positive Pressure
 - More Air In Than Out

- Negative Pressure
 - More Air Out Than In

- Neutral Pressure
 - Equal Airflows
Pressure Fundamentals

Stack Effect

- Air tends to enter a building at lower levels and exit at upper levels due to convection.

- This condition is increased by the presence of connections between lower and upper floors of the building (e.g., shafts).

- Stack effect is also greater when there are openings at the lower and upper levels.

Copyright 2008 Turner Building Science & Design, LLC
Pressure Fundamentals

- Pressure Conducting Pathways
 - Elevator Shafts
 - Stairways
 - Mechanical Chases
 - Pipe Chases
 - Conduits

Copyright 2008 Turner Building Science & Design, LLC
Pressure Fundamentals
Pressure Fundamentals

HVAC Systems

Unbalanced supply and return flows

Non-functional equipment

Return air plenums

Copyright 2008 Turner Building Science & Design, LLC

Graphic courtesy EPA
Vapor Intrusion Control

- Negative pressure below slab
 - Sub-slab suction
- Positive pressure above slab
 - Increased ventilation
- Negative pressure between source and occupants
 - Containment

Copyright 2008 Turner Building Science & Design, LLC
Vapor Intrusion Control

- Negative pressure below slab
 - Sub-slab suction
 - Assume 200 cfm exhaust
 - First cost?

Copyright 2008 Turner Building Science & Design, LLC
Vapor Intrusion Control

- Positive pressure above slab
 - Increased ventilation
 - Assume 2,000 cfm additional outside air
 - Change damper position to accomplish change

Copyright 2008 Turner Building Science & Design, LLC
Vapor Intrusion Control Economics

In New England Conditioning Outdoor Air Is Costly ($6-$12/Yr.CFM)
Vapor Intrusion Control Economics

- Sub-slab suction
 - 200 cfm x $9/cfm-yr = $1,800/yr
 - 10 year cost of operation = $18,000
 - First Cost??

- Increased ventilation
 - 2,000 cfm x $9/cfm-yr = $18,000/yr
 - 10 year cost of operation = $180,000
 - First cost = ~$0
Vapor Intrusion Control

- Negative pressure between source and occupants
 - Containment

Copyright 2008 Turner Building Science & Design, LLC
Vapor Intrusion Control

- Negative pressure between source and occupants
 - Walk-out Basement Example
Exhaust Reentrainment

Contaminants exhausted out of the building can be drawn in through intakes and other openings.

Fig. 3 Flow Recirculation Regions and Exhaust-to-Intake Stretched-String Distances (Wilson 1982)
Exhaust Reentrainment

Copyright 2008 Turner Building Science & Design, LLC
Questions & Comments.....

Steven M. Caulfield, P.E., CIH
Turner Building Science & Design, LLC
The H.L. Turner Group Inc.

1-800-439-3446

www: turnerbuildingscience.com

www: hlturner.com

Copyright 2008 Turner Building Science & Design, LLC